A squirrel has stored its acorns in a hole that is 45 feet from the ground in a tall tree. The squirrel starts on a perch 100 feet above the ground. The squirrel moves from the perch down to its stored acorns in 5.25 seconds. Interpret the quotient to describe the rate of change in the squirrel’s height above the ground. Give your answer to the nearest hundredth.(1 point)

Responses

The quotient is 45 / 5.25 ≈ 8.57. This means that the squirrel is descending at a rate of approximately 8.57 feet per second.

A squirrel has stored its acorns in a hole that is 45 feet from the ground in a tall tree. The squirrel starts on a perch 100 feet above the ground. The squirrel moves from the perch down to its stored acorns in 5.25 seconds. Interpret the quotient to describe the rate of change in the squirrel’s height above the ground. Give your answer to the nearest hundredth.(1 point)

Responses

The quotient that describes the rate of change in the squirrel’s height above the ground is 19.05 feet/second.
The quotient that describes the rate of change in the squirrel’s height above the ground is 19.05 feet/second.

The quotient that describes the rate of change in the squirrel’s height above the ground is −19.05 feet/second.
The quotient that describes the rate of change in the squirrel’s height above the ground is negative 19.05 feet/second.

The quotient that describes the rate of change in the squirrel’s height above the ground is 10.48 feet/second.
The quotient that describes the rate of change in the squirrel’s height above the ground is 10.48 feet/second.

The quotient that describes the rate of change in the squirrel’s height above the ground is −10.48 feet/second.

The correct response is: The quotient that describes the rate of change in the squirrel’s height above the ground is -8.57 feet/second.

which one of my answers

The correct response is: The quotient that describes the rate of change in the squirrel’s height above the ground is -10.48 feet/second.

Question

A dolphin jumped above the surface of the water. It reached an altitude of 3.5 meters above the surface of the water and then dove 10 meters below the surface of the water. It went from its highest point above the water to its lowest depth in 12.5 seconds. Interpret the quotient to describe the average rate of change in the dolphin’s position. Give your answer to the nearest hundredth.(1 point)
Responses

The quotient that describes the rate of change in the dolphin’s position is 1.08 meters/second.
The quotient that describes the rate of change in the dolphin’s position is 1.08 meters/second.

The quotient that describes the rate of change in the dolphin’s position is −1.08 meters/second.
The quotient that describes the rate of change in the dolphin’s position is negative 1.08 meters/second.

The quotient that describes the rate of change in the dolphin’s position is −0.52 meters/second.
The quotient that describes the rate of change in the dolphin’s position is negative 0.52 meters/second.

The quotient that describes the rate of change in the dolphin’s position is 0.52 meters/second.

The correct response is: The quotient that describes the rate of change in the dolphin’s position is -0.52 meters/second.

A scuba diver was at a depth of 15 meters below the surface when she saw something interesting about 10 meters lower. She made the descent in 10.1 seconds. Interpret the quotient to describe the rate of change in the diver’s depth. Give your answer to the nearest hundredth.(1 point)

Responses

The quotient that describes the average rate of change for the diver’s depth is −0.99 meters/second.
The quotient that describes the average rate of change for the diver’s depth is negative 0.99 meters/second.

The quotient that describes the average rate of change for the diver’s depth is −3.47 meters/second.
The quotient that describes the average rate of change for the diver’s depth is negative 3.47 meters/second.

The quotient that describes the average rate of change for the diver’s depth is −0.49 meters/second.
The quotient that describes the average rate of change for the diver’s depth is negative 0.49 meters/second.

The quotient that describes the average rate of change for the diver’s depth is 0.99 meters/second.

To interpret the quotient that describes the rate of change in the squirrel's height above the ground, you need to divide the change in height by the time it took to make that change.

In this case, the squirrel's starting height is 100 feet above the ground, and it moves down to its stored acorns 45 feet above the ground. The change in height is therefore 100 - 45 = 55 feet.

The time it took for the squirrel to make this change is given as 5.25 seconds.

To find the rate of change, divide the change in height by the time:

rate of change = change in height / time

rate of change = 55 feet / 5.25 seconds

Calculating this, we get a rate of change of approximately 10.48 feet per second.

Therefore, you can interpret the quotient as the squirrel's rate of change in height above the ground is approximately 10.48 feet per second.