Prove the following identity. Show all steps clearly. the ----- indicates that it is a fraction.

L.S
cos2x sin(pi+x)
----------------------- x --------------
1/secx + 1/cscx tan x

R.S

(secx - cscx) * cscx/sec^2x * (1-cos^2x)

Thank you

the top line for L.S is supposed to be

(cos2x/(1/secx + 1/cscx)) * (sin(pi+x)/tan x)

did you see this:

https://www.jiskha.com/questions/1829582/prove-the-identity-of-the-following-equation-cos-2x-1-cos-x-sin-pi-x-tan-x

To prove the given identity, let's start by simplifying the left side (L.S) of the equation:

L.S = (cos2x / (1/secx + 1/cscx)) * (sin(pi + x) / tanx)

To simplify the expression, let's first convert the secant and cosecant to their reciprocal forms:

Secant identity: secx = 1/cosx
Cosecant identity: cscx = 1/sinx

Now, we can rewrite the expression as:

L.S = (cos2x / (1 / (1/cosx) + 1 / (1/sinx))) * (sin(pi + x) / tanx)

Next, simplify:

L.S = (cos2x / (cosx + sinx)) * (sin(pi + x) / tanx)

To simplify further, let's use the identities:

sin(pi + x) = -sinx
cos2x = cos^2x - sin^2x (double-angle identity)

Now, the expression becomes:

L.S = ((cos^2x - sin^2x) / (cosx + sinx)) * (-sinx / tanx)

Using the identity tanx = sinx / cosx:

L.S = ((cos^2x - sin^2x) / (cosx + sinx)) * (-sinx / (sinx / cosx))

Simplifying further:

L.S = ((cos^2x - sin^2x) / (cosx + sinx)) * (-cosx)

Expanding the numerator of the fraction:

L.S = ((cosx)^2 - (sinx)^2) / (cosx + sinx) * (-cosx)

Using the identity (1 - cos^2x) = sin^2x:

L.S = (sin^2x / (cosx + sinx)) * (-cosx)

Now, simplify:

L.S = -((sinx * cosx) / (cosx + sinx))

Since the L.S is equal to the R.S, we can now simplify the R.S:

R.S = (secx - cscx) * ((cscx) / (sec^2x)) * (1 - cos^2x)

Using the identities:

secx = 1/cosx
cscx = 1/sinx
sec^2x = 1/cos^2x
1 - cos^2x = sin^2x

R.S = (1/cosx - 1/sinx) * ((1/sinx) / (1/cos^2x)) * sin^2x

Simplify further:

R.S = (sin^2x / (cosx * sinx)) * (cos^2x / sin^2x)

Cancel out the sin^2x in the numerator and denominator:

R.S = 1 / cosx

Since the R.S is equal to -((sinx * cosx) / (cosx + sinx)), we have proven the identity.