maths
posted by chirag .
If x and y satisfy the conditions that 23≤x≤45 and −54≤y≤−32, what is the maximum possible value of x−y?

maths 
Reiny
for xy to be a maximum, x must be as large as possible and y must be as small as possible
xy
= 45  (54) = 99
Respond to this Question
Similar Questions

Math
f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(1)= b)f(0)= (^Teach how to do this.) Duplicate the graphs. What is the formula? 
Math: Pre Cal
f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(1)= b)f(0)= (^Teach how to do this.) What is the formula? 
Calculus
If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate … 
Calculus
If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate … 
algebra 1 help please
4) a student score is 83 and 91 on her first two quizzes. write and solve a compound inequality to find possible values for a thord quiz score that would give anverage between 85 and 90. a. 85≤83+91+n/3 ≤90; 81≤n≤96 … 
Maths
Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x3−ax2+a2b3x+9a2b2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k2, … 
probability
Let Sn be the number of successes in n independent Bernoulli trials, where the probability of success for each trial is 1/2. Provide a numerical value, to a precision of 3 decimal places, for each of the following limits. You may want … 
Maths
Let f be a function such that f(−6)=−6, f(6)=6, f is differentiable for all real values of x and −1≤f'x≤1 for all real values of x. Prove that f(x)=x for all −6≤x≤6 I tried applying the … 
Differentials (calc)
Solve the Poisson equation ∇^2u = sin(πx) for 0 ≤ x ≤ 1and 0 ≤ y ≤ 1 with boundary conditions u(x, 0) = x for 0 ≤ x ≤ 1/2, u(x, 0) = 1 − x for 1/2 ≤ x ≤ 1 and 0 everywhere … 
Calculus
f is a continuous function with a domain [−3, 9] such that f(x)= 3 , 3 ≤ x < 0 x+3 , 0 ≤ x ≤ 6 3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=2 b=x On what interval is g increasing?