# ALGEBRA

posted by .

Use the definition of logarithm to simplify each expression.
text((a) )log_(3b) $$3b$$

text((b) )log_(4b) $$(4b)^6$$

text((c) )log_(7b) $$(7b)^(-11)$$

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### microsoft office aplication-computers

what is an advantage of inputting text on a slide via a text in powerpointx a )any font can be selected within a text box b)text within a text box can be formatted by color or style c)you can position the text anywhere on the slide …
2. ### ALGEBRA

(a) Write the expression in terms of natural logarithms. (Express all logarithmic functions in terms of ln(x) in your answer.) log_(8.5) $$127$$ = Give a calculator approximation (correct to four decimal places). log_(8.5) $$127$$ …
3. ### ALGEBRA

Evaluate the given expressions (to two decimal places). (a) log((23.0) ((b) log_(2) $$128$$ text((c) ) log_(9) $$1$$
4. ### ALGEBRA

Use the definition of logarithm to simplify each expression. (a) )log_(3b) $$3b$$ ((b) )log_(8b) $$(8b)^6$$ (c) )log_(10b) $$(10b)^(-13)$$
5. ### ALGEBRA

Evaluate the given expressions (to two decimal places). (a) ) log((23.0) (b) ) log_(2) $$128$$ (c) ) log_(9) $$1$$
6. ### ALGEBRA

Contract the expressions. That is, use the properties of logarithms to write each expression as a single logarithm with a coefficient of 1. text((a) ) ln$$3$$-2ln$$4$$+ln$$8$$ text((b) )ln$$3$$-2ln$$4+8$$ text((c) )ln$$3$$-2(ln$$4$$+ln$$8$$)
7. ### ALGEBRA

Write the expression in terms of common logarithms, and then give a calculator approximation (correct to four decimal places). log_(7) $$80$$
8. ### ALGEBRA

(a) Write the expression in terms of natural logarithms. (Express all logarithmic functions in terms of ln(x) in your answer.) log_(8.9) $$135$$ = (b) Give a calculator approximation (correct to four decimal places). log_(8.9) $$135$$ …
9. ### Trigonometry

Every point (x,y) on the curve y = \log_{2}{3x} is transferred to a new point by the following translation (x',y') =(x+m,y+n), where m and n are integers. The set of (x',y') form the curve y = \log_{2}{(12x-96)} . What is the value …
10. ### algebra

Let $x$, $y$, and $z$ be positive real numbers that satisfy $2 \log_x (2y) = 2 \log_{2x} (4z) = \log_{2x^4} (8yz) \neq 0.$ The value of $xy^5 z$ can be expressed in the form $\frac{1}{2^{p/q}}$, where $p$ and $q$ are relatively prime …

More Similar Questions