# Chemisty

Enrico Fermi was a famous physicist who liked to pose what are now known as Fermi problems in which several assumptions are made in order to make a seemingly impossible estimate. One example of a Fermi problem is "Caesar's last breath" which estimates that you, right now, are breathing some of the molecules exhaled by Julius Caesar just before he died.

Assumptions:
1. The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere.
2. The atmosphere is 50 km thick, has an average temperature of 15 °C, and an average pressure of 0.20 atm.
4. The volume of a single human breath is roughly 500 mL.

Perform the following calculations, reporting all answers to two significant figures.

Calculate the total volume of the atmosphere.

Calculate the total number of gas molecules in the atmosphere.

Calculate the number of gas molecules in Caesar's last breath (37°C and 1.0 atm).

What fraction of all air molecules came from Caesar's last breath?

About how many molecules from Caesar's last breath do you inhale each time you breathe?

1. 👍 0
2. 👎 0
3. 👁 1,801
1. Your question is not correct . I cannot understand your question

1. 👍 0
2. 👎 0
2. It is not one question. It is a series of questions. First calculate the total volume of the atmosphere. Second calculate the total number of gas molecules in the atmosphere. Third calculate the number of gas molecules in Caesar's last breat. Fourth calculate what fraction of all air molecules came from Caesar's last breath. Lastly, calculate how many molecules from Caesar's last breath do you inhale each time you breathe.

1. 👍 0
2. 👎 0
3. Perhaps I can get you started.
Wouldn't the volume of the atmosphere+earth = (4/3)*pi*r^3. r would be radius of earth + thickness of atmosphere for total volume. Then determine volume of earth and subtract to obtain volume of the atmosphere.

1. 👍 0
2. 👎 0
4. I keep getting the answer to the volume of the atmosphere wrong. Are my calculations correct? Or what is my problem?

I calculate that the total volume of Earth + thickness of atmosphere is:
(4/3)*pi*(6450000 m)^3 = 1.124*10^21

I then calculate that the volume of the Earth is:
(4/3)*pi*(6400000 m)^3 = 1.098*10^21

Finally I subtract the volume of Earth from the total volume, which gives me that the volume of the atmosphere is 2.6*10^19

1. 👍 0
2. 👎 0
5. you only answered one part of the question!

1. 👍 0
2. 👎 0

## Similar Questions

1. ### Physics

A large crate filled with physics laboratory equipment must be moved up an incline onto a truck. 1. The crate is at rest on the incline. What can you say about the force of friction acting on the crate? a. The friction force point

2. ### Art History

Connexus 8th Grade A. Babylon B. The Lotus Bloom C. Pottery D. Hanging Gardens of Babylon E. Relief Sculpture F. The Phoenicians G. The Ishtar Gate H. The Persians I. Persopolis J. The Assyrians Fill in the blank with the term or

3. ### Health (Ms. Sue)

How can the failure to take antibiotics properly pose a risk to other people's health? A: The failure to take antibiotics properly can pose a risk to other people’s health as, by doing this, it leads to the development of

4. ### science

What is the correct order of the steps used in the scientific method? (1) conduct background research (2) formulate a hypothesis (3) pose a question (4) test the hypothesis (5) analyze the data and draw a conclusion (6)

1. ### Math

Discount tickets to a basketball tournament sell fro \$4.00 each. Enrico spent \$60.00 on discount tickets, \$37.50 less than if he had brought the tickets at the regular price. What was the regular ticket price?

2. ### statistics

According to a Gallup Poll conducted in March of 2009, 38% of American adults polled believe that global warming will pose a serious threat to them or their way of life in their lifetime. Assuming a sample size of 1000, calculate

3. ### Math

For a scientific experiment, a physicist must make sure that the temperature of a metal does not get colder than −78 °C. The physicist changes the metal's temperature at a steady rate of −3 °C per hour. Let t represent

4. ### history

What is the correct order of the steps used in the scientific method? (1) pose a question (2) conduct background research (3) formulate a hypothesis (4) test the hypothesis (5) analyze the data and draw a conclusion (6)