# Trig(3 all with work)

1)Find the exact value of cos 105 by using a half-angle formula.
A)sqrt 2 - sqrt 3 /2
B)-sqrt 2 - sqrt 3 /2
C)-sqrt 2 + sqrt 3 /2
D)sqrt 2 + sqrt 3 /2

cos 105
cos 105 = cos 210/2
sqrt 1 + 210/2
sqrt 1 + sqrt 3/2 /2
sqrt 2 + sqrt 3/2 which is D

2)Find the solution of sin2 theta = cos theta if 0 -< theta < 180
A)30 degrees and 90 degrees
B)30 degrees and 150 degrees
C)30 degrees, 90 degrees, 150 degrees
D)0 degrees, 90 degrees, and 150 degrees

sin2 theta = cos theta
sin2 theta - 1 = 0
(sin theta + 1)(sin theta - 1)= 0
sin theta = -1 or sin theta = 1 which is B

3)An insect population P in a certain area fluctuates with the seasons. It is estimated that P = 17,000 + 4500 sin pi(t)/52, where t is given in weeks. Determine the number of weeks it would take for the population to initially reach 20,000.
A)12 weeks
B)692 weeks
C)38 weeks
D)42 weeks

P = 17,000 + 4500 sin pi(t)/52
20,000 = 17,000 + 4500 sin pi(t)/52
3,000 = 4500 sin pi(t)/52
.666 = sin pi(t)/52
The closest thing is C

1. 👍 0
2. 👎 0
3. 👁 417
1. 3) Try again. t= 52/PI * arcsin .6666
2) the second line baffles me, how did you get sin^2T -1=0 from the line above?

1. 👍 0
2. 👎 0
2. #1 of 1
The cosine of 105 has to be negative because it is in the second quadrant. The same applies to cos 210 in the third quadrant.
cos 210 = -(sqrt3)/2
|cos 105| = sqrt[(1/2)(1 - cos 210)]
= sqrt[(1/2)(1 - (sqrt3)/2]]
For cos 105, a minus sign must be put in front of that to make the answer negative. This agrees with none of your selections, but is the correct answer for cos 105, which is -0.25882

1. 👍 0
2. 👎 0
posted by drwls
3. I will try question 1.

We need to use the correct Half-Angle Formula to find the exact value of cos105 degrees without using a calculator.

Because 105 degrees = cos(210)/2, we can use the Half-Angle Formula for
cos(x)/2 with x = 210 degrees. Also, because 105 degrees lies in quadrant 2, where cosine is negative, we choose the NEGATIVE SIGN when using the formula below.

The formula we want is this one:

cos(x/2) = - sqrt{(1 + cos(x)/2)}.

Do you see the negative IN FRONT of the square root?

Why? Like I said above, cosine is negative in quadrant 2.

cos(210)/2 = sqrt{(1 + cos210)/2)}

What is the value of cos210 degrees?

Cos210 degrees = - sqrt{3}/2.

We plug -sqrt{3}/2 in the radicand and simplify.

-sqrt{(1 - sqrt{3}/2)/2)}

After doing the algebra, we get

cos105 degrees = [sqrt{2) - sqrt {3}]/2...Choice A.

Done!

1. 👍 0
2. 👎 0
posted by Guido
4. for #3 make sure that if you take arcsin your calculator is switched to radians.
I got an answer of 12 for bobpursleys expression

for #2 I too, like Bob, was puzzled
First of all is it

sin 2θ = cos θ or sin2 θ = cos θ ?

for the first one
2sinθcosθ - cosθ = 0
cosθ(1sinθ - 1) = 0
cosθ=0 or sinθ=1/2
so θ = 90º or θ = 30º or 150º for your domain, which is choice C

If you meant the second interpretation, change, change sin^2 θ to 1 - cos^2 θ and use the quadratic formula

1. 👍 0
2. 👎 0
posted by Reiny
5. Reiny said:

"The same applies to cos 210 in the third quadrant."

When we deal with Half-Angle Formulas, the sign selected to be placed in front of the square root has to do with the ORIGINAL degree given.

He was given cos105 degrees (in quadrant 2) not 210 degrees (quadrant 3).

This is why cosine is NEGATIVE (in quadrant 2) and also why we use the formula cos(x/2) = -sqrt{(1 + cos(x))/2}

1. 👍 0
2. 👎 0
posted by Guido
6. Did you mean to direct this to me?

1. 👍 0
2. 👎 0
posted by Reiny
7. I apologize. I though you were talking about question 1.

Sorry mate....

1. 👍 0
2. 👎 0
posted by Guido

## Similar Questions

1. ### Calculus

Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2,

asked by COFFEE on July 10, 2007
2. ### Calculus - Second Order Differential Equations

Posted by COFFEE on Monday, July 9, 2007 at 9:10pm. download mp3 free instrumental remix Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8))

asked by COFFEE on July 10, 2007
3. ### Math:)

A person is on the outer edge of a carousel with a radius of 20 feet that is rotating counterclockwise around a point that is centered at the origin. What is the exact value of the position of the rider after the carousel rotates

asked by girly girl on March 22, 2018
4. ### Trig/Precalc

So I have two questions that have been puzzling me for quite some time and would really appreciate any help with either of them! (a) There are four positive intergers a, b, c, and d such that

asked by majorbill on January 4, 2015

Can someone check these for me? Please? Use half-angle identity to find the exact value of cos165 degrees. (-1/2) sqrt(2+sqrt(3)) Write the equation 2x+3y-5=0 in normal form. (-2sqrt(13)/13)x- (3sqrt(13)/13)y+ (5 sqrt (13)/13) = 0

asked by Jason on April 28, 2009
6. ### Math/Calculus

Solve the initial-value problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? Thanks. y''+4y'+6y=0, y(0)=2, y'(0)=4 r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2 r=-2 +/- sqrt(2)*i , alpha

asked by COFFEE on July 12, 2007
7. ### Trig

Find the exact values of the six trigonometric functions 0 if the terminal side of 0 in standard position contains the points(-5,-4). (0 is not the number zero I don't know what its called) I have to find r first. r=sqrt x^2+y^2

asked by Jon on March 6, 2008
8. ### Calculus - Second Order Differential Equations

Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2

asked by COFFEE on July 9, 2007
9. ### Trig

Find the exact value of sinx/2 if cosx = 2/3 and 270 < x < 360. A)1/3 B)-1/3 C)sqrt 6/6 D)-sqrt 6/6 C, since I KNOW cosx is always positive but I don't know the work involved. I know the half angle formula

asked by Jon on February 15, 2008
10. ### Math Analysis

Use the half-angle formula to find the exact value of cos(x/2) when tanx = -5/8 and x is in quadrant IV. (| is a radical) ==> I got sqrt((89 + 8sqrt(89))/178). Is this correct? I hope my answer is easy to read..

asked by Emily on May 3, 2010

More Similar Questions