# Physics (Rolling)

In Fig. 11-35, a solid brass ball of mass m will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius R, and the ball has radius r << R. (a) What is h if the ball is on the verge of leaving the track when it reaches the top of the loop? (b) If the ball is released at height h = 6R, what is the magnitude of the horizontal force component acting on the ball at point Q? State your answers in terms of the given variables, using g where applicable.

Figure: i.imgur. com/ WvU4V.gif
(remove spaces)

1. 👍 0
2. 👎 0
3. 👁 264
1. first, at the top of the loop, centripetal force <= mg

centriptal force= m v^2/R where v= wR
= m w^2 * R

but rolling energy + Kinetic energy+ potential energy at the top has to be = mgh

so work that out to find h. For I of the solid ball, I= 2/5 mr^2

1. 👍 0
2. 👎 0

## Similar Questions

1. ### Physics

A solid brass ball of mass 9.5 g will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius R = 4.2 m, and the ball has radius r

asked by Bridgette on November 17, 2011
2. ### Physics - KE/rotation

In Figure 11-32 (which shows a ball at the top of an incline, at the bottom of the incline a loop begins with radius R and Q a point on the loop lined up with the center of the loop), a solid brass ball of mass m and radius r will

asked by COFFEE on March 25, 2007
3. ### Physics - KE

In Figure 11-32 (which shows a ball at the top of an incline, at the bottom of the incline a loop begins with radius R and Q a point on the loop lined up with the center of the loop), a solid brass ball of mass m and radius r will

asked by COFFEE on March 27, 2007
4. ### Physics - KE

In Figure 11-32 (which shows a ball at the top of an incline, at the bottom of the incline a loop begins with radius R and Q a point on the loop lined up with the center of the loop), a solid brass ball of mass m and radius r will

asked by COFFEE on March 27, 2007
5. ### physics

A mass m = 76.0 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius R = 19.7 m and finally a flat straight section at the same height as the center of the loop (19.7 m off the ground). Since

asked by Anonymous on September 28, 2012
6. ### College Physics

A student of mass M = 82 kg takes a ride in a frictionless loop-the-loop at an amusement park. The radius of the loop-the-loop is R = 15 m. The force due to the seat on the student at the top of the loop-the-loop is FN = 696 N and

asked by Jack on March 17, 2016
7. ### physics

A mass m = 88 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius R = 15.5 m and finally a flat straight section at the same height as the center of the loop (15.5 m off the ground). Since

asked by amanda on March 22, 2018
8. ### physics

A mass m = 88 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius R = 15.5 m and finally a flat straight section at the same height as the center of the loop (15.5 m off the ground). Since

asked by katie on March 22, 2018
9. ### Physics

A solid sphere and a thin walled spherical she'll, both with a radius R, are set up to roll down a ramp and through a vertical loop of radius r. From what minimum height, h, does each sphere need to be released in order to make it

asked by Kassy on November 8, 2016
10. ### physics

A mass m = 76.0 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius R = 19.7 m and finally a flat straight section at the same height as the center of the loop (19.7 m off the ground). Since

asked by Anonymous on September 28, 2012

More Similar Questions