Respond to this Question
Similar Questions

maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 12, 2011 
maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 17, 2011 
maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 14, 2011 
maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 14, 2011 
maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 15, 2011 
maths
The variation in a population is modelled by the recurrence relation (Jn+1 0.9257 0.0208) (Jn) + (0.014) (An+1 0.0661 0.9767) (An) (0.056) where Jn and An are the sizes, in millions, of the subpopulations of juveniles and adults,
asked by albert on May 16, 2011 
Math
Does the relation in the table represent direct variation, inverse variation, or neither? If it is direct or inverse variation, write an equation to represent the relation. Explain your answer. x; 5,10,15,20 y; 2,1 ,2/3,1/2 Can
asked by Olivia N J on March 1, 2017 
maths
The variation in size from year to year of a particular population can be modelled by an exponential model with annual proportionate growth rate 0.1246. The size of the population at the start of the initial year is 360. Choose
asked by albert on May 12, 2011 
maths
The variation in size from year to year of a particular population can be modelled by an exponential model with annual proportionate growth rate 0.1246. The size of the population at the start of the initial year is 360. Choose
asked by albert on May 12, 2011 
maths
The variation in size from year to year of a particular population can be modelled by an exponential model with annual proportionate growth rate 0.1246. The size of the population at the start of the initial year is 360. Choose
asked by albert on May 11, 2011