maths
 👍 0
 👎 0
 👁 105

 👍 0
 👎 0
Respond to this Question
Similar Questions

Differential Equations
The velocity v of a freefalling skydiver is well modeled by the differential equation m*dv/dt=mgkv^2 where m is the mass of the skydiver, g is the gravitational constant, and k is the drag coefficient determined by the position

Calculus
Suppose that we use Euler's method to approximate the solution to the differential equation 𝑑𝑦/𝑑𝑥=𝑥^4/𝑦 𝑦(0.1)=1 Let 𝑓(𝑥,𝑦)=𝑥^4/𝑦. We let 𝑥0=0.1 and 𝑦0=1 and pick a step size ℎ=0.2.

AP Calculus Help Five Questions
1. Find the particular solution to y " = 2sin(x) given the general solution y = 2sin(x) + Ax + B and the initial conditions y(pi/2) = 0 and y'(pi/2) = 2. 2. What function is a solution to the differential equation y '  y = 0?

Calculus
For Questions 1–2, use the differential equation given by dy/dx = xy/3, y > 0. 1. Complete the table of values x 1 1 1 0 0 0 1 1 1 y 1 2 3 1 2 3 1 2 3 dy/dx 2. Find the particular solution y = f(x) to the given differential

Calculus
Consider the differential equation dy/dx = x^4(y  2). Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0. Is this y=e^(x^5/5)+4?

Calculus
For Questions 1–3, use the differential equation given by dx equals xy/3, y > 0. Complete the table of values x −1 −1 −1 0 0 0 1 1 1 y 1 2 3 1 2 3 1 2 3 dy/dx ? ? ? ? ? ? ? ? ? Find the particular solution y = f(x) to the

Differential Equations (Another) Cont.
For the following initial value problem: dy/dt=1/((y+1)(t2)) a)Find a formula for the solution. b) State the domain of definition of the solution. c) Describe what happens to the solution as it approaches the limit of its domain

Differential Equations
Consider the differential equation: dy/dt=y/t^2 a) Show that the constant function y1(t)=0 is a solution. b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution

Differential Equations
Find the general solution of the differential equation specified. 1) dy/dt= 1/(ty+1+y+1) 2) dy/dx=sec y I got y(x)=arcsin(x) for the second one. I'm not sure what to do with the first one.

math
Consider the differential equation dy/dx = 1 + (y^2/ x). Let y = g(x) be the particular solution to the differential equation dy/ dx = 1 + (y^2/ x) with initial condition g(4) = 2. Does g have a relative minimum, a relative

Calculus!!
Consider the differential equation given by dy/dx = xy/2. A. Let y=f(x) be the particular solution to the given differential equation with the initial condition. Based on the slope field, how does the value of f(0.2) compare to

calculus
consider the differential equation dy/dx= (y  1)/ x squared where x not = 0 a) find the particular solution y= f(x) to the differential equation with the initial condition f(2)=0 (b)for the particular solution y = F(x) described
You can view more similar questions or ask a new question.