physics

A 1.1 kg block is held against a spring of force constant 2.0×10^4 N/m, compressing it a distance of 0.20 m.

How fast is the block moving after it is released and the spring pushes it away?

v=____m/s

  1. 👍 0
  2. 👎 0
  3. 👁 259
  1. stored energy=1/2 k x^2

    the KE gained is equal to that, solve for v.

    1. 👍 0
    2. 👎 0
    👨‍🏫
    bobpursley

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    You push a 2.0 kg block against a horizontal spring, compressing the spring by 15 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 75 cm from where you released it. The spring constant is

  2. physics

    A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. You

  3. physics

    A block of mass m = 3.53 kg is attached to a spring which is resting on a horizontal frictionless table. The block is pushed into the spring, compressing it by 5.00 m, and is then released from rest. The spring begins to push the

  4. Physics

    A 263-g block is dropped onto a vertical spring with force constant k = 2.52N/cm. The block sticks to the spring, and the spring compress 11.8 cm before coming momentarily to rest. while the spring is being compressed, how much

  1. physics

    A 0.5-kg block slides along a horizontal frictionless surface at 2m/s. It is brought to rest by compressing a very long spring of spring constant 800N/m. The maximum spring compression is:

  2. Physics

    A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block

  3. physics

    A 0.250 kg block on a vertical spring with a spring constant of 5.00 103 N/m is pushed downward, compressing the spring 0.120 m. When released, the block leaves the spring and travels upward vertically. How high does it rise above

  4. physics

    A moving 1.60 kg block collides with a horizontal spring whose spring constant is 295 N/m. The block compresses the spring a maximum distance of 3.50 cm from its rest position. The coefficient of kinetic friction between the block

  1. Mechanics

    A 30.0-kg block is resting on a flat horizontal table. On top of this block is resting a 15.0-kg block, to which a horizontal spring is attached, as the drawing illustrates. The spring constant of the spring is 325 N/m. The

  2. physics

    [20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a

  3. PIPS

    A block of mass, 10 kg, collides with a spring with a spring constant of 200 N/m at a speed of 12 m/s compressing the spring. When the block stops moving, how far is the spring compressed?

  4. physics

    A light spring with force constant 3.85 N/m is compressed by 5.00 cm as it is held between a 0.250 kg block on the left and a 0.500 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each

You can view more similar questions or ask a new question.