# probability

3)If the random variable T is the time to failure of a commercial product and the values of its probability density and distribution function at time "t" are f(t) and F(t), then its failure rate at time t is given by f(t) / 1-F(t)
Thus, the failure rate at time t is the probability density of failure at time t given that failure does not occur prior to time t.
a)show that if t is an exponential distribution, the failure rate is constant.
b)show that if T has a weibull distribution thae failure rate is given by (alpha*beta)*t^beta-1

1. 👍 0
2. 👎 0
3. 👁 258

## Similar Questions

1. ### probability

Sophia is vacationing in Monte Carlo. On any given night, she takes X dollars to the casino and returns with Y dollars. The random variable X has the PDF shown in the figure. Conditional on X=x , the continuous random variable Y

2. ### Probability

Question:A fair coin is flipped independently until the first Heads is observed. Let the random variable K be the number of tosses until the first Heads is observed plus 1. For example, if we see TTTHTH, then K=5. For K=1,2,3...K,

3. ### Probability

For each of the following statements, determine whether it is true (meaning, always true) or false (meaning, not always true). Here, we assume all random variables are discrete, and that all expectations are well-defined and

4. ### probability

Let K be a discrete random variable with PMF pK(k)=⎧⎩⎨⎪⎪1/3,2/3,0if k=1,if k=2,otherwise. Conditional on K=1 or 2, random variable Y is exponentially distributed with parameter 1 or 1/2, respectively. Using Bayes' rule,

1. ### probability

Determine whether each of the following statement is true (i.e., always true) or false (i.e., not always true). 1. Let X be a random variable that takes values between 0 and c only, for some c≥0, so that P(0≤X≤c)=1. Then,

2. ### math

The random variable X is exponential with parameter λ=1 . The random variable Y is defined by Y=g(X)=1/(1+X) . a) The inverse function h , for which h(g(x))=x , is of the form ay^b+c . Find a , b , and c . b) For y∈(0,1] , the

3. ### probability

A fair coin is flipped independently until the first Heads is observed. Let K be the number of Tails observed before the first Heads (note that K is a random variable). For k=0,1,2,…,K, let Xk be a continuous random variable

4. ### Statistics

Let X be a random variable that takes integer values, with PMF pX(x) . Let Y be another integer-valued random variable and let y be a number. a) Is pX(y) a random variable or a number? b) Is pX(Y) a random variable or a number?

1. ### Probability & Statistics

The random variable X has a standard normal distribution. Find the PDF of the random variable Y , where: 1. Y = 5X−7 . 2. Y = X2−2X . For y≥−1 ,

2. ### STATISTICS

Consider a binomial random variable where the number of trials is 12 and the probability of success on each trial is 0.25. Find the mean and standard deviation of this random variable. I have a mean of 4 and a standard deviation

3. ### Probability

1.Let 𝑋 and 𝑌 be two binomial random variables: a.If 𝑋 and 𝑌 are independent, then 𝑋+𝑌 is also a binomial random variable b.If 𝑋 and 𝑌 have the same parameters, 𝑛 and 𝑝 , then 𝑋+𝑌 is a binomial

4. ### Math

Suppose a baseball player had 211 hits in a season. In the given probability distribution, the random variable X represents the number of hits the player obtained in the game. x P(x) 0 0.1879 1 0.4106 2 0.2157 3 0.1174 4 0.0624 5