Find

f gx
and
gf x
for each of the following pairs of functions.

a)
f x  3x  4
;
gx  2x  5

b)
f x x 5x
2
 
;
gx  2x 1

a)

f[g(x)] = f(-2x + 5) = 3(-2x + 5) + 4 = -6x + 15 + 4 = -6x + 19

g[f(x)] = g(3x + 4) = -2(3x + 4) + 5 = -6x - 8 + 5 = -6x - 3

b)
f[g(x)] = f(2x + 1) = (2x + 1)^2 + 5(2x + 1) = 4x^2 + 4x + 1 + 10x + 5 = 4x^2 + 14x + 6

g[f(x)] = g(x^2 + 5x) = 2(x^2 + 5x) + 1 = 2x^2 + 10x + 1

a) To find f[g(x)], substitute g(x) into the function f(x):

f[g(x)] = 3(g(x)) + 4

Now substitute the expression for g(x):

f[g(x)] = 3(-2x + 5) + 4

Simplify the expression:

f[g(x)] = -6x + 15 + 4

Combine like terms:

f[g(x)] = -6x + 19

To find g[f(x)], substitute f(x) into the function g(x):

g[f(x)] = -2(f(x)) + 5

Now substitute the expression for f(x):

g[f(x)] = -2(3x + 4) + 5

Simplify the expression:

g[f(x)] = -6x - 8 + 5

Combine like terms:

g[f(x)] = -6x - 3

b) To find f[g(x)], substitute g(x) into the function f(x):

f[g(x)] = (g(x))^5 + 5(g(x))^2

Now substitute the expression for g(x):

f[g(x)] = (2x + 1)^5 + 5(2x + 1)^2

To simplify this expression further, we would need to expand the polynomial and simplify.

To find g[f(x)], substitute f(x) into the function g(x):

g[f(x)] = 2(f(x)) + 1

Now substitute the expression for f(x):

g[f(x)] = 2((x^2 + 5x) + 1) + 1

Simplify the expression:

g[f(x)] = 2x^2 + 10x + 2 + 1

Combine like terms:

g[f(x)] = 2x^2 + 10x + 3