Given that tan 75 degrees=2+√3 without using a table or a calculator determine 5 tan 15 degrees leaving your answer in the form a+b√3

We know that tan 75 degrees = 2+√3.

Using the identity tan (A+B) = (tan A + tan B) / (1 - tan A tan B), we can rewrite 75 degrees as (45 degrees + 30 degrees).

tan (45 degrees + 30 degrees) = (tan 45 degrees + tan 30 degrees) / (1 - tan 45 degrees * tan 30 degrees).

We know that tan 45 degrees = 1, and tan 30 degrees = 1/√3.

Substituting these values, we get:

tan (45 degrees + 30 degrees) = (1 + 1/√3) / (1 - 1 * 1/√3).

Simplifying the expression, we can multiply the numerator and denominator by √3 to eliminate the square root from the denominator:

= (√3 + 1) / (√3 - 1/√3)
= (√3 + 1) / (√3 - 1/√3)
= (√3 + 1) / (√3 - 1/√3) * (√3/√3)
= (√3 + √3) / (√3*√3 - 1)
= (2√3) / (3-1)
= (2√3) / 2
= √3

So, tan (75 degrees) = √3.

We are required to find 5 tan 15 degrees.

Using the identity tan (A-B) = (tan A - tan B) / (1 + tan A tan B), we can rewrite 15 degrees as (45 degrees - 30 degrees).

tan (45 degrees - 30 degrees) = (tan 45 degrees - tan 30 degrees) / (1 + tan 45 degrees * tan 30 degrees).

We know that tan 45 degrees = 1, and tan 30 degrees = 1/√3.

Substituting these values, we get:

tan (45 degrees - 30 degrees) = (1 - 1/√3) / (1 + 1 * 1/√3).

Simplifying the expression, we can multiply the numerator and denominator by √3 to eliminate the square root from the denominator:

= (√3 - 1) / (√3 + 1/√3)
= (√3 - 1) / (√3 + 1/√3)
= (√3 - 1) / (√3 + 1/√3) * (√3/√3)
= (√3 - √3) / (√3*√3 + 1)
= (0) / (3 + 1)
= 0

Therefore, 5 tan 15 degrees = 5 * 0 = 0.

The answer is 0.

We can use the trigonometric identity for tan(2θ) to find tan 15 degrees.

The trigonometric identity for tan(2θ) is given by:

tan(2θ) = (2 * tan(θ))/(1 - tan^2(θ))

Since we know the value of tan 75 degrees, we can express it as tan(2θ) where θ = 37.5 degrees. Hence, tan(37.5 degrees) = (2 * tan(15 degrees))/(1 - tan^2(15 degrees))

Let's substitute tan(37.5 degrees) = 2 + √3 and solve for tan(15 degrees).

2 + √3 = (2 * tan(15 degrees))/(1 - tan^2(15 degrees))

Now, let's solve for tan(15 degrees):

(2 * tan(15 degrees))/(1 - tan^2(15 degrees)) = 2 + √3

Cross-multiplying:

2 * tan(15 degrees) = (2 + √3) * (1 - tan^2(15 degrees))

Expanding the right side:

2 * tan(15 degrees) = 2 + √3 - (2 * tan^2(15 degrees)) - (√3 * tan^2(15 degrees))

Combine like terms:

2 * tan(15 degrees) + (2 * tan^2(15 degrees)) + (√3 * tan^2(15 degrees)) = 2 + √3

Rearranging:

(2 * tan^2(15 degrees)) + (√3 * tan^2(15 degrees)) + 2 * tan(15 degrees) - (2 + √3) = 0

Now, we can factor out tan(15 degrees):

tan^2(15 degrees) * (2 + √3) + 2 * tan(15 degrees) * (1 - (2 + √3)) = 0

tan(15 degrees) * (tan(15 degrees) * (2 + √3) + 2 * (1 - (2 + √3))) = 0

Simplifying further:

tan(15 degrees) * (tan(15 degrees) * (2 + √3) - 2√3 - 2) = 0

Since we are looking for a non-zero solution, we can ignore the (tan(15 degrees) * (2 + √3) - 2√3 - 2) term.

Hence, tan(15 degrees) = 0

Therefore, 5 tan(15 degrees) = 5 * 0 = 0

So, the answer is 0.