Let \Theta be the parameter space, let X_1,X_2,\dots ,X_ n be random variables, and let \alpha \in (0,1) be a fixed positive real number. Given a candidate Bayesian confidence regions, \mathcal{R}, we want to check whether it is indeed a confidence region within \alpha. That is, we want to check if

\mathbb {P}(\theta \in \mathcal{R}|X_1,X_2,\dots X_ n) \geq 1-\alpha ,

holds. Assuming that \Theta is a finite set, the probability above turns out to be

\mathbb {P}(\theta \in \mathcal{R}|X_1,X_2,\dots X_ n)=\sum _{\theta \in \mathcal{R}}P_1(\theta ),

where P_1(\cdot ) is some distribution supported on \Theta.

Which one of the probability distributions below gives the correct choice of P_1(\cdot )?

\pi (\theta ), the prior distribution on \theta.

L_ n(X_1,\dots ,X_ n|\theta ), the likelihood of the model.

\pi (\theta |X_1,X_2,\dots ,X_ n), the posterior distribution of \theta, conditional on X_1,X_2,\dots ,X_ n.

None of the above.

The correct choice of P_1(\cdot) is the posterior distribution \pi(\theta|X_1,X_2,\dots,X_n). This is because the posterior distribution incorporates both the prior information \pi(\theta) and the likelihood L_n(X_1,\dots,X_n|\theta) in order to update our beliefs about the parameter \theta given the observed data X_1,X_2,\dots,X_n. Therefore, it is the appropriate distribution to use when calculating the probability \mathbb{P}(\theta \in \mathcal{R}|X_1,X_2,\dots,X_n).

The correct choice of P_1(\cdot) is \pi (\theta |X_1,X_2,\dots ,X_n), the posterior distribution of \theta, conditional on X_1,X_2,\dots ,X_n.