(o) (1 + sinα – cosα)2 + (1 – sinα + cosα)2 = 4(1 – sinα . cosα)

Expanding the left side of the equation, we have:

(1 + sinα – cosα)² + (1 – sinα + cosα)²
= (1 + sinα – cosα)(1 + sinα – cosα) + (1 – sinα + cosα)(1 – sinα + cosα)
= 1 + 2sinα - 2cosα + sin²α - 2sinαcosα + cos²α + 1 - 2sinα + 2cosα + sin²α - 2sinαcosα + cos²α
= 2 + 2sin²α - 4sinαcosα + 2cos²α

Using the trigonometric identity sin²α + cos²α = 1, we can rewrite the expression as:

2 + 2(1 - cos²α) - 4sinαcosα + 2cos²α
= 2 + 2 - 2cos²α - 4sinαcosα + 2cos²α
= 4 - 2cos²α - 4sinαcosα

Now, let's simplify the right side of the equation:

4(1 – sinα . cosα)
= 4 - 4sinαcosα

From here, we can see that the left side and the right side of the equation are equal, as both simplify to 4 - 2cos²α - 4sinαcosα.

Therefore, the given equation is true for all values of α.

To solve this equation step-by-step, let's start by expanding and simplifying both sides:

Left side: (1 + sinα – cosα)² + (1 – sinα + cosα)²
= (1 + sinα – cosα)(1 + sinα – cosα) + (1 – sinα + cosα)(1 – sinα + cosα)
= (1 + sinα – cosα)² + (1 – sinα + cosα)² + 2(1 + sinα – cosα)(1 – sinα + cosα)

Right side: 4(1 – sinα . cosα)
= 4 - 4sinα . cosα

Now, let's simplify further:

(1 + sinα – cosα)² + (1 – sinα + cosα)² + 2(1 + sinα – cosα)(1 – sinα + cosα) = 4 - 4sinα . cosα

Expanding the products:
(1 + sinα – cosα)² = (1 + sinα – cosα)(1 + sinα – cosα)
= 1 + sinα + sinα + sin²α - cosα - cosα - sinα.cosα + cos²α

(1 – sinα + cosα)² = (1 – sinα + cosα)(1 – sinα + cosα)
= 1 – sinα – sinα + sin²α + cosα – cosα + sinα.cosα + cos²α

Simplifying these equations:
(1 + sinα – cosα)² = 1 + 2sinα + sin²α - 2cosα - 2sinα.cosα + cos²α

(1 – sinα + cosα)² = 1 – 2sinα + sin²α + 2cosα + 2sinα.cosα + cos²α

Now we can substitute these simplifications back into the original equation:

(1 + 2sinα + sin²α - 2cosα - 2sinα.cosα + cos²α) + (1 – 2sinα + sin²α + 2cosα + 2sinα.cosα + cos²α) + 2(1 + sinα – cosα)(1 – sinα + cosα) = 4 - 4sinα . cosα

Rearranging and simplifying:
2 + 2sin²α + 2cos²α = 4 - 4sinα . cosα

Simplifying further:
2(sin²α + cos²α) + 2 = 4 - 4sinα . cosα

Since sin²α + cos²α = 1, the equation becomes:
2 + 2 = 4 - 4sinα . cosα

Simplifying once more:
4 = 4 - 4sinα . cosα

Now, subtracting 4 from both sides:
0 = -4sinα . cosα

Dividing both sides by -4:
0 = sinα . cosα

Therefore, the equation is satisfied when sinα . cosα = 0.