Find š¹(š‘„), if š‘“(š‘„ āˆ’ 2) = š‘„3 + 3š‘„2 āˆ’ 3š‘„ + 7

To find š¹(š‘„), we need to substitute (š‘„ + 2) in place of š‘„ in the equation š‘“(š‘„ āˆ’ 2) = š‘„3 + 3š‘„2 āˆ’ 3š‘„ + 7:

š‘“(š‘„ āˆ’ 2) = š‘„3 + 3š‘„2 āˆ’ 3š‘„ + 7
š‘“((š‘„ + 2) āˆ’ 2) = (š‘„ + 2)3 + 3(š‘„ + 2)2 āˆ’ 3(š‘„ + 2) + 7 (substituting š‘„ + 2 in place of š‘„)
š‘“(š‘„) = (š‘„ + 2)3 + 3(š‘„ + 2)2 āˆ’ 3(š‘„ + 2) + 7

Expanding and simplifying:

š‘“(š‘„) = š‘„3 + 9š‘„2 + 23š‘„ + 17

Therefore, š¹(š‘„) = š‘„3 + 9š‘„2 + 23š‘„ + 17.

To find š¹(š‘„), we need to substitute š‘„ āˆ’ 2 into š‘“(š‘„ āˆ’ 2) in the equation š‘“(š‘„ āˆ’ 2) = š‘„3 + 3š‘„2 āˆ’ 3š‘„ + 7.

So, substitute š‘„ āˆ’ 2 for š‘„ in the equation:

š‘“(š‘„ āˆ’ 2) = (š‘„ āˆ’ 2)3 + 3(š‘„ āˆ’ 2)2 āˆ’ 3(š‘„ āˆ’ 2) + 7

Now, let's simplify this expression.

First, expand (š‘„ āˆ’ 2)3 using the binomial theorem. This gives us:

(š‘„ āˆ’ 2)3 = š‘„3 āˆ’ 3š‘„2(2) + 3š‘„(2)2 āˆ’ 2(2)3 = š‘„3 āˆ’ 6š‘„2 + 12š‘„ āˆ’ 8

Next, expand 3(š‘„ āˆ’ 2)2. This gives us:

3(š‘„ āˆ’ 2)2 = 3(š‘„2 āˆ’ 4š‘„ + 4) = 3š‘„2 āˆ’ 12š‘„ + 12

Similarly, expand -3(š‘„ āˆ’ 2). This gives us:

-3(š‘„ āˆ’ 2) = -3š‘„ + 6

Now, substitute these expressions back into the equation:

š‘“(š‘„ āˆ’ 2) = (š‘„ āˆ’ 2)3 + 3(š‘„ āˆ’ 2)2 āˆ’ 3(š‘„ āˆ’ 2) + 7

š‘“(š‘„ āˆ’ 2) = š‘„3 āˆ’ 6š‘„2 + 12š‘„ āˆ’ 8 + 3š‘„2 āˆ’ 12š‘„ + 12 āˆ’ 3š‘„ + 6 + 7

Combine like terms:

š‘“(š‘„ āˆ’ 2) = š‘„3 āˆ’ 6š‘„2 + 3š‘„2 + 12š‘„ āˆ’ 12š‘„ āˆ’ 3š‘„ āˆ’ 8 + 12 + 6 + 7

š‘“(š‘„ āˆ’ 2) = š‘„3 + 7

Therefore, š‘“(š‘„) = š¹(š‘„ āˆ’ 2) = š‘„3 + 7.