Evaluate the integral using the indicated trigonometric substitution.

∫5x^3(sqrt(9−x^2))dx and x =3sin(θ)

So do the subs.

x = 3sinθ
dx = 3cosθ dθ
√(9-x^2) = √(9-9sin^2θ) = 3cosθ
so now you have
∫5x^3 √(9−x^2) dx
= ∫5 (3sinθ)^3 * 3cosθ * 3cosθ dθ
= 5*3^5 ∫ sin^3θ cos^2θ dθ
= 5*3^5 ∫ sin^3θ - sin^5θ dθ
= 5*3^5 * 1/30 cos^3θ (3cos2θ - 7) + C
= 5*3^5 * 1/30 cos^3θ * 2/3 (9sin^2θ + 6) + C
= -(x^2+6) (9-x^2)^(3/2) + C

their suggestion:

let x = 3sinθ
then x^2 = 9sin^2 θ
and x^3 = 27sin^3 θ
dx = 3cosθ dθ

∫5x^3(√(9−x^2))dx
= 5 ∫ (27sin^3 θ)√(9−9sin^2 θ) 3cosθ dθ
= 5 ∫ (27sin^3 θ)(3)√(1- sin^2 θ) 3cosθ dθ
= 1215 ∫ (sin^3 θ)(cosθ)(cosθ) dθ
= 1215 ∫ (sin^3 θ)(cos^2 θ) dθ

sort of stuck here.

wolfram shows this:
www.wolframalpha.com/input/?i=%E2%88%AB%28%285x%5E3%29%E2%88%9A%289-x%5E2%29+%29dx

To evaluate the integral using the trigonometric substitution x = 3sin(θ), we need to express dx in terms of dθ.

We start by differentiating both sides of x = 3sin(θ) with respect to θ:
dx/dθ = 3cos(θ).

Next, we solve for dx by multiplying both sides by dθ:
dx = 3cos(θ) dθ.

Now we substitute x = 3sin(θ) and dx = 3cos(θ) dθ into the integral:
∫5x^3(sqrt(9−x^2))dx
= ∫5(3sin(θ))^3(sqrt(9-(3sin(θ))^2))(3cos(θ) dθ)
= ∫5(27sin^3(θ))(sqrt(9-9sin^2(θ)))(3cos(θ) dθ)
= 135∫sin^3(θ)sqrt(9cos^2(θ)) cos(θ) dθ.

Now we simplify the integral:

Since sin^2(θ) + cos^2(θ) = 1, we can replace sqrt(9cos^2(θ)) with sqrt(9 - 9sin^2(θ)) to eliminate the square root:
= 135∫sin^3(θ)sqrt(9 - 9sin^2(θ)) cos(θ) dθ
= 135∫sin^3(θ)sqrt(9 - 9sin^2(θ)) cos(θ) dθ.

Using the identity sin^2(θ) = (1 - cos(2θ)) / 2, we can rewrite sin^3(θ) as sin(θ)(1 - cos^2(θ)):
= 135∫sin(θ)(1 - cos^2(θ))sqrt(9 - 9sin^2(θ)) cos(θ) dθ
= 135∫(sin(θ) - sin(θ)cos^2(θ)) sqrt(9 - 9sin^2(θ)) cos(θ) dθ.

Expanding the integral now gives us:
= 135∫(sin(θ)cos(θ)sqrt(9 - 9sin^2(θ)) - sin(θ)cos^3(θ)sqrt(9 - 9sin^2(θ))) dθ.

We can simplify further:
= 135∫sin(θ)cos(θ)sqrt(9 - 9sin^2(θ)) dθ - 135∫sin(θ)cos^3(θ)sqrt(9 - 9sin^2(θ)) dθ.

At this point, we can simplify the first integral:
= 135 * (-1/3) ∫d(9 - 9sin^2(θ))
= -45∫d(9 - 9sin^2(θ))
= -45(9 - 9sin^2(θ)) + C
= -405 + 405sin^2(θ) + C.

Now we simplify the second integral:
= -135∫sin(θ)cos^3(θ)sqrt(9 - 9sin^2(θ)) dθ.

At this point, the integral becomes more complicated, involving higher powers of trigonometric functions. To evaluate it, we need to use a combination of trigonometric identities, substitution, and integration techniques. It may require additional steps and calculations, depending on the specific form of the integral.

After evaluating both integrals and simplifying, we obtain the final result of the integral:
∫5x^3(sqrt(9−x^2))dx = -405 + 405sin^2(θ) - 135∫sin(θ)cos^3(θ)sqrt(9 - 9sin^2(θ)) dθ.