An isotropic epoxy resin (𝐸=2πΊπ‘ƒπ‘Ž, 𝜈=0.3) is reinforced by unidirectional glass fibers (πΈπ‘”π‘™π‘Žπ‘ π‘ =70πΊπ‘ƒπ‘Ž), aligned in the 2 direction, such that the fiber composite is transversely isotropic, with the 1-3 plane being the plane of isotropy. The elastic constants of the fiber composite are:

𝐸1=3.3πΊπ‘ƒπ‘Ž,
𝜈13=0.25
𝐸2=29.2πΊπ‘ƒπ‘Ž,
𝜈12=0.3
𝐸3=3.3πΊπ‘ƒπ‘Ž,
𝐺12=1.27πΊπ‘ƒπ‘Ž
(Note that πœˆπ‘–π‘—=βˆ’πœ€π‘—/πœ€π‘–) Give numerical values for all strain components in the corresponding strain matrix for the stress state below.
𝜎=⎑10 5 0 ⎀
βŽ₯5 -20 0 βŽ₯ π‘€π‘ƒπ‘Ž
⎣ 0 0 0⎦

Value for πœ€1 ?? (It isn’t 3.235*10^(-3))

To find the numerical value for πœ€1 (strain along the 1-direction), we can start by using Hooke's law to relate stress and strain:

𝜎 = [ C ] * πœ€

where 𝜎 is the stress matrix, [ C ] is the stiffness matrix, and πœ€ is the strain matrix.

Given:
𝜎 = ⎑10 5 0 ⎀
βŽ₯5 -20 0 βŽ₯
⎣ 0 0 0⎦

To find πœ€1, we need to determine the first row of the strain matrix.

Let πœ€1 = πœ€, πœ€2 = 0, πœ€3 = 0, πœ€23 = 0.

Using the relationship 𝜎 = [ C ] * πœ€, we can write the stress-strain equations for the first component (𝜎11):

10 = π‘ͺ11 * πœ€1 + π‘ͺ12 * πœ€2 + π‘ͺ13 * πœ€3 + π‘ͺ14 * πœ€23

Since πœ€2 = πœ€3 = πœ€23 = 0, the equation simplifies to:

10 = π‘ͺ11 * πœ€1

Now, we need to find the value of π‘ͺ11 from the given elastic constants.

From the expression 𝐸 = 2𝐺(1 + 𝜈):

𝐺 = 𝐸/(2(1 + 𝜈))

For the epoxy resin, 𝐸 = 2πΊπ‘ƒπ‘Ž = 2π‘₯10^9 π‘ƒπ‘Ž.

𝐺 = (2π‘₯10^9 π‘ƒπ‘Ž)/(2(1 + 0.3)) = 1.111111111 x 10^9 π‘ƒπ‘Ž

Now, using the relationship 𝐸 = π‘ͺ11/(1 - 𝜈12*𝜈21):

𝐸 = π‘ͺ11/(1 - 𝜈12*𝜈21)

Solving for π‘ͺ11:

π‘ͺ11 = 𝐸(1-𝜈𝜈21)

Substituting the given values, we get:

π‘ͺ11 = (3.3πΊπ‘ƒπ‘Ž)(1-0.3*0.3)

π‘ͺ11 = 2.739 πΊπ‘ƒπ‘Ž

Plugging π‘ͺ11 back into the stress-strain equation:

10 = (2.739 πΊπ‘ƒπ‘Ž) * πœ€1

Solving for πœ€1:

πœ€1 = 10/(2.739 πΊπ‘ƒπ‘Ž)

πœ€1 β‰ˆ 3.65 x 10^(-9)

Therefore, the numerical value for πœ€1 is approximately 3.65 x 10^(-9) (Note: this value is different from 3.235 x 10^(-3) which is not the correct answer).