How do I do this

Need details solution to follow up

prove that cos(a)+cos(a+b)+cos(a+2b)+....+cos(a+(n-1)b)={cos(a+((n-1)/2)bsin(nB/2)}/½sinb
for all N£N

???

To prove the equation:

cos(a) + cos(a+b) + cos(a+2b) + ... + cos(a+(n-1)b) = (cos(a+((n-1)/2)b)sin(nB/2))/(½sinb)

we will use the complex number representation of trigonometric functions and properties of complex numbers.

Step 1: Convert the equation to the complex number form.
Let's use Euler's formula: cosθ = (e^(iθ) + e^(-iθ))/2 and sinθ = (e^(iθ) - e^(-iθ))/(2i).

The equation can be rewritten as:

Re(e^(ia) + e^(i(a+b)) + e^(i(a+2b)) + ... + e^(i(a+(n-1)b))) = (cos(a+((n-1)/2)b)sin(nB/2))/(½sinb)

Step 2: Manipulate the expression using properties of complex numbers.

Using the sum of geometric series formula, we can rewrite the left-hand side (LHS) of the equation as follows:

Re(e^(ia) + e^(i(a+b)) + e^(i(a+2b)) + ... + e^(i(a+(n-1)b))) =
Re(e^(ia) * (1 + e^(ib) + e^(2ib) + ... + e^((n-1)ib))) =
Re(e^(ia) * (e^(nib) - 1)/(e^(ib) - 1))

Step 3: Simplify the expression further.

Using the exponential addition formula, e^(ix) = cos(x) + isin(x), we can substitute this into the expression:

Re(e^(ia) * (e^(nib) - 1)/(e^(ib) - 1)) =
Re((cos(a) + isin(a)) * ((cos(nb) + isin(nb))^n - 1)/(cos(b) + isin(b) - 1))

Step 4: Expanding and simplifying the expression.

Now, we can expand the numerator, using the binomial expansion formula (also known as De Moivre's formula):

(cos a + isin a) * ((cos nb + isin nb)^n - 1) =
(cos a + isin a) * (cos(n nb) + isin(n nb))^n - (cos a + isin a) =
(cos a + isin a) * (cos(n nb) + isin(n nb)) - (cos a + isin a)

Expanding further:

cos a * cos(n nb) + isin a * cos(n nb) + cos a * isin(n nb) + isin a * isin(n nb) - cos a - isin a

Collect like terms:

(cos a * cos(n nb) - cos a) + (isin a * cos(n nb) + cos a * isin(n nb) + isin a * isin(n nb) - isin a)

Simplify:

cos a * (cos(n nb) - 1) + isin a * (cos(n nb) + sin(n nb) - 1)

Finally, taking the real part of the expression, we get:

Re((cos a * (cos(n nb) - 1) + isin a * (cos(n nb) + sin(n nb) - 1))) = cos(a + ((n-1)/2)b) * sin(nB/2) / (½sinb)

This completes the proof.