maths

dy/dt = -t^3y^2-ty^2

dx/dt=(sin t)/(cos t+10)

dy/dx -3y/x =x^3cosx

Which differential method should be used for each equation?

  1. 👍 0
  2. 👎 0
  3. 👁 158
  1. I'd say

    separation of variables, since you can write it as

    dy/y^2 = -(t+t^3) dt

    -------------------------------------------

    next is just direct integration, since you already have dy/dt as a function of t.

    -------------------------------------------

    The last is of the form

    y' + y p(x) = q(x)

    so look for an integrating factor

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    Find complete length of curve r=a sin^3(theta/3). I have gone thus- (theta written as t) r^2= a^2 sin^6 t/3 and (dr/dt)^2=a^2 sin^4(t/3)cos^2(t/3) s=Int Sqrt[a^2 sin^6 t/3+a^2 sin^4(t/3)cos^2(t/3)]dt =a Int

  2. Calculus 12th grade (double check my work please)

    1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

  3. calculus

    Find the points on the curve y= (cos x)/(2 + sin x) at which the tangent is horizontal. I am not sure, but would I find the derivative first: y'= [(2 + sin x)(-sin x) - (cos x)(cos x)]/(2 + sin x)^2 But then I don't know what to

  4. tigonometry

    expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b)

  1. trig

    The expression 4 sin x cos x is equivalent to which of the following? (Note: sin (x+y) = sin x cos y + cos x sin y) F. 2 sin 2x G. 2 cos 2x H. 2 sin 4x J. 8 sin 2x K. 8 cos 2x Can someone please explain how to do this problem to

  2. Maths

    Cos^4(θ)/cos^2(α) + sin^4(θ)/ sin^2(α)=1 Prove that cos^4 alpha/cos^ thetha + sin^4alpha/ sin^2thetha= 1

  3. Trig

    Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) -

  4. Calculus

    Find the velocity, v(t), for an object moving along the x-axis if the acceleration, a(t), is a(t) = cos(t) − sin(t) and v(0) = 3. a) v(t) = sin(t) + cos(t) +3 b) v(t) = sin(t) + cos(t) +2 c) v(t) = sin(t) - cos(t) +3 d) v(t) =

  1. Calculus

    Integrate 1/sinx dx using the identity sinx=2(sin(x/2)cos(x/2)). I rewrote the integral to 1/2 ∫ 1/(sin(x/2)cos(x/2))dx, but I don't know how to continue. Thanks for the help. Calculus - Steve, Tuesday, January 12, 2016 at

  2. calc

    Where do I start to prove this identity: sinx/cosx= 1-cos2x/sin2x please help!! Hint: Fractions are evil. Get rid of them. Well, cos2x = cos2x - sin2x, so 1-coscx = 1 - cos2x - sin2x = 1 - cos2x + sin2x You should be able to

  3. Calculus

    Find the velocity, v(t), for an object moving along the x-axis in the acceleration, a(t), is a(t)=cos(t)-sin(t) and v(0)=3 a) v(t)=sin(t) + cos(t) +3 b) v(t)=sin(t) + cos(t) +2 c) v(t)= sin(t) - cos(t) +3 d) v(t)= sin(t) - cos(t)

  4. Precalculus

    Use one of the identities cos(t + 2πk) = cos t or sin(t + 2πk) = sin t to evaluate each expression. (Enter your answers in exact form.) (a) sin(19π/4) (b) sin(−19π/4) (c) cos(11π) (d) cos(53π/4) (e) tan(−3π/4) (f)

You can view more similar questions or ask a new question.