Calculus  Rates of Change
 👍
 👎
 👁

 👍
 👎
👤bobpursley 
 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

calculus2
A tank is full of water. Find the work required to pump the water out of the spout. (Use 9.8 m/s^2 for g. Use 1000 kg/m^3 as the density of water. Assume r = 9 m and h = 3 m.) The tank is a spherical shape with r as the

algebra
A candle in the shape of a circular cone has a base of radius r and a height of h that is the same length as the radius. Which expresses the ratio of the volume of the candle to its surface area(including the base)? For cone,

Calculus
Water is running into an open conical tank at the rate of 9 cubic feet per minute. The tank is standing inverted, and has a height of 10 feet and a base diameter of 10 feet. At what rate is the radius of the water in the tank

calculus problem I have tried 100 times
A tank in the shape of an inverted right circular cone has height 5 meters and radius 4 meters. It is filled with 2 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the

calculus
water is pouring into a conical cistern at the rate of 8 m^3/minute. If the height of the inverted cone is 12 meters and the radius of its circular opening is 6 meters, how fast is the water level rising when the water is 4 meters

AP calculus
The base of a coneshaped tank is a circle of radius 5 feet, and the vertex of the cone is 12 feet above the base. The tank is being filled at a rate of 3 cubic feet per minute. Find the rate of change of the depth of water in the

Calculus
A container is in the shape of an inverted right circular cone has a radius of 2 in at the top and a height of 6 in. At the instant when the water in the conatiner is 5 in deep, the surface level is falling at the rate of .4

Calculus
Given a right circular cone, you put an upsidedown cone inside it so that its vertex is at the center of the base of the larger cone, and its base is parallel to the base of the larger cone. If you choose the upsidedown cone to

Calculus
A water tank has a shape of an inverted circular cone with base radius 3 m and height of 5 m. If the water is being pumped into the tank at a rate of 2 m^3 /min, find the rate at which the water level is rising when the water is 3

calculus
A water tank has the shape of an inverted right circular cone with base radius 3 meters and height 6 meters. Water is being pumped into the tank at the rate of 12 meters3/sec. Find the rate, in meters/sec, at which the water level

math
Two right circular cone, one upside down in the other. The two bases are parallel. The vertex of the smaller cone lies at the center of the larger cone’s base. The larger cone’s height and base radius are 12 and 16 ft,

Maths
A right circular cone of base radius 5 cm and depth 20 cm is held with its vertex downwards. If water is leaking through a small hole in the vertex at the rate of 8 cm^3/s, find the rate of change of the water level in the cone
You can view more similar questions or ask a new question.