# Math

Find the indefinite integral.
(e^(4 x) + e^(-5 x)) dx

1. 👍 0
2. 👎 0
3. 👁 161
1. recall that ∫ e^u du = e^u

∫e^(4x) dx
let u = 4x, so du = 4 dx. That means that you have

∫e^(4x) (1/4)(4x dx) = ∫ 1/4 e^u du = 1/4 e^u = 1/4 (e^4x)

similarly, for any constant a,

∫e^(ax) dx = 1/a e^(ax)

and as always, don't forget the +C !

1. 👍 0
2. 👎 0

## Similar Questions

1. ### math

Evaluate the following indefinite integral by using the given substitution to reduce the integral to standard form integral 2(2x+6)^5 dx, u=2x+6

2. ### calculus

Using an upper-case "C" for any arbitrary constants, find the general indefinite integral ∫ (-2-t)(-9-t^2) dt Now I multiplied both parentheses to get: ∫ (18 + 2t^2 + 9t + t^3) dt now I integrated and got: 18t + 2t^3/3 +

3. ### calc 1

Evaluate the indefinite integral. e^(8x)sin(e^(8x))

4. ### math

Evaluate the following indefinite integral by using the given substitution to reduce the integral to standard form integral cos(9x) dx, u=9x

1. ### Calculus

Find the indefinite integral (integral sign) 3te^2tdt

2. ### Calculus

Evaluate the indefinite integral. (e^7x)/(e^14x+16)dx

3. ### calculus

Find the indefinite integral and check the result by differentiation: (integral) x^2 +2x -3 ---------- dx x^4

4. ### Math

Find the indefinite integral. x^2(5 x^3 + 9)^3 dx

Evaluate the indefinite integral. integral 2e^(2x)sin(e^2x) Note: Use an upper-case "C" for the constant of integration.

2. ### Calculus II

Find the indefinite integral. ∫xe^-4xdx

3. ### Math

1. Evaluate the indefinite integral integral symbol[6x5+2sec(x) tan(x)]dx. 2. Integral symbol 8 at the top, 5 at the bottom 3x2+3x2 dx = Thanks

4. ### Math

Could someone answer this question so I understand it. Thanks Find the indefinite integral: çx/ã3x^2+4 dx Use C as the arbitrary constant.