Post a New Question

Calc 2

posted by .

Integrate the following:

a. Integral from 0 to pi (sin^2)(3x)dx

b. Integral of (x^2)/((x^2 - 4)^3/2)

  • Calc 2 -

    a) (sin^2)(3x)
    using cos 2A = 1 - 2sin^2 A
    cos 6x = 1 - 2sin^2 (3x)
    sin^2 3x = 1/2 - (1/2) cos 6x
    so integral sin^2 3x = (1/2)x - (1/12)sin(6x)

    Take it from there, I will let you do the substitution and evaluation

  • Calc 2 -

    tried integration by parts on the 2nd, but it got messy, probably made an error
    Gave up and used Wolfram with results of
    log(2(√(x^2-4) + x)) - x/√(x^2-4) + C

    http://integrals.wolfram.com/index.jsp?expr=%28x%5E2%29%2F%28%28x%5E2+-+4%29%5E%283%2F2%29%29&random=false

    tested it and got the original back after differentiating it

    http://www.wolframalpha.com/input/?i=derivative+log%282%28√%28x%5E2-4%29+%2B+x%29%29+-+x%2F√%28x%5E2-4%29

  • Calc 2 -

    I tried change of variables (trig functions) on number 2, and got messy also, gave up.

  • Calc 2 -

    ∫(x^2)/((x^2 - 4)^3/2 dx
    x = 2coshθ
    dx = 2sinhθ dθ
    x^2-4 = 4sinh^2θ

    ∫4cosh^2θ/8sinh^3θ 2sinhθ dθ

    Keeping in mind that
    arccoshθ = log(z+√(z^2-1))

    I think wolfram's answer is less mysterious.

    Just as trig substitutions are your friend, so are the hyperbolic functions.

Answer This Question

First Name
School Subject
Your Answer

Related Questions

More Related Questions

Post a New Question