# Calculus 3

posted by .

If the curve of intersection of the parabolic cylinder
y = x^2
and the top half of the ellipsoid
x^2 + 5y^2 + 5z^2 = 25.
Then find parametric equations for this curve.

• Calculus 3 -

the cylinder has parametric equations
x = t
y = t^2
Intersect that with the ellipsoid and you get

x = t
y = t^2
z = 1/5 √(25-t^2-5t^4)

• Calculus 3 -

I got sqrt 5 on the bottom

• Calculus 3 - Damon is correct -

and you would be correct.
I knew there was something not right.

## Similar Questions

1. ### Calc.

sketch the curve using the parametric equation to plot the points. use an arrow to indicate the direction the curve is traced as t increases. Find the lenghth of the curve for o<t<1. Find an equation for the line tangent to the …
2. ### math

Let C be the curve of intersection of the parabolic cylinder x2 = 2y, and the surface 3z = xy. Find the exact length of C from the origin to the point (3, 9/2, 9/2).
3. ### calculus

(a) Modifying the parametric equations of a unit circle, find parametric equations for the ellipse: x^2/a^2 + y^2/b^2 = 1 (b) Eliminate the parameter to find a Cartesian equation of the curve x=2sint; y=4+cost; t >(or equal to) …
4. ### Calc 3

Find parametric equations for the tangent line to the curve of intersection of the paraboloid z = x2 + y2 and the ellipsoid 6x2 + 5y2 + 7z2 = 39 at the point (−1, 1, 2)
5. ### Calc 3

Find parametric equations for the tangent line to the curve of intersection of the paraboloid z = x^2 + y^2 and the ellipsoid 6x^2 + 5y^2 + 7z^2 = 39 at the point (−1, 1, 2)
6. ### Calculus

A curve is defined by the parametric equations: x = t2 – t and y = t3 – 3t Find the coordinates of the point(s) on the curve for which the normal to the curve is parallel to the y-axis. You must use calculus and clearly show your …
7. ### calc 3

Find parametric equations for the tangent line to the curve of intersection of the paraboloid z = x2 + y2 and the ellipsoid 7x2 + 2y2 + 6z2 = 33 at the point (−1, 1, 2). (Enter your answer as a comma-separated list of equations. …
8. ### math

The parametric equations of a curve are x = 4t and y = 4 − t2. Find the equations of the normals to the curve at the points where the curve meets the x-axis. Hence, find the point of intersection of these normals.
9. ### Calculus

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = 5 ln t, y = 8sqrt(t), z = t^5 (0,8,1) (x(t),y(t),z(t))=( )
10. ### pre calculus

Explain how you sketch a plane curve given by parametric equations?

More Similar Questions