Fluid Mechanics

posted by .

Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place.
When Fluid is entering the pipe: P= 50 psig
Diameter of the pipe= 12 in.
Fluid leaving the pipe: P= 5 psig
Diameter of the pipe= 2.5 in.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Fluid Mechanics

    Water at 600F flows steadily through a horizontal circular divergent duct and discharges into the atmosphere as shown. A manometer with a fluid of SG=2.0 is placed between the two cross-sections with diameters D1 = 0.5 ft and D2 = …
  2. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  3. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  4. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  5. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  6. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  7. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  8. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  9. Fluid Mechanics

    Oil (sp. gr.= 0.8) flows smoothly through the circular reducing section shown at 3 ft^3/s. If the entering and leaving velocity profiles are uniform, estimate the force which must be applied to the reducer to hold it in place. When …
  10. physicss

    An ideal fluid flows through a pipe made of two sections with diameters of 1.0 and 3.0 inches, respectively. What is the ratio of the speed of the fluid through the 3.0-inch section to the speed of the fluid through the 1.0-inch section?

More Similar Questions