math
posted by jamesbond .
The probability that a positive divisor of 60 is greater than 9 can be written as a/b, where a and b are coprime positive integers. What is the value of a+b?
Respond to this Question
Similar Questions

Math
Let S(n) denote the sum of digits of the integer n. Over all positive integers, the minimum and maximum values of S(n)/S(5n) are X and Y, respectively. The value of X+Y can be written as a/b , where a and b are coprime positive integers. … 
Algebra
Joe picks 2 distinct numbers from the set of the first 14 positive integers S = \{1,2,3,\ldots,14\}. The probability that the sum of the 2 numbers is divisible by 3 can be expressed as \frac{a}{b}, where a and b are coprime positive … 
mathematics
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of p/q+r/s can be written as ab, where a and b are positive, coprime integers. What is the value of a+b? 
Maths!!!
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of (p/q)+(r/s) can be written as a/b, where a and b are positive, coprime integers. What is the value of a+b? 
MAths
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of p/q+r/s can be written as a/b, where a and b are positive, coprime integers. What is the value of a+b? 
math
The probability that a positive divisor of 60 is greater than 9 can be written as a/b, where a and b are coprime positive integers. What is the value of a+b? 
help!!!!! Probability!!!
A fair 6sided die is rolled twice. The probability that the second roll is strictly less than the first roll can be written as a/b, where a and b are positive, coprime integers. What is the value of a+b? 
math
A fair coin is flipped 3 times. The probability of getting exactly two heads, given that at least one flip results in a head, can be written as a/b, where a and b are coprime positive integers. What is the value of a+b? 
math
A fair coin is flipped 3 times. The probability of getting exactly two heads, given that at least one flip results in a head, can be written as a/b, where a and b are coprime positive integers. What is the value of a+b? 
algebra!!!! please help me!!!!
The smallest possible positive value of 1−[(1/w)+(1/x)+(1/y)+(1/z)] where w, x, y, z are odd positive integers, has the form a/b, where a,b are coprime positive integers. Find a+b.