maths

posted by .

Find the number of different ordered quadruples (a,b,c,d) of complex numbers such that
a^2=1
b^3=1
c^4=1
d^6=1
a+b+c+d=0

  • maths -

    visit wolframalpha.com and enter

    solve a^2=1, b^3=1, c^4=1, d^6=1, a+b+c+d=0

    and you can check your details.

  • maths -

    There are 3 solutions with real numbers and 4 solutions with complex numbers

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Maths

    How many ordered quadruples of distinct positive integers (a,b,c,d) are there such that 1/a+1/b+1/c+1/d=1?
  2. Maths

    How many ordered quadruples of distinct positive integers (a,b,c,d) are there such that 1/a+1/b+1/c+1/d=1?
  3. maths

    There are N ordered integer quadruples (a,b,c,d) subject to 0≤a,b,c,d≤99990 such that ad−bc≡1(mod99991). What are the last three digits of N?
  4. ALGEBRA

    How many ordered triples of complex numbers(a,b,c) are there such that a^3-b,b^3-c,c^3-a are rational numbers, and a^2(a^4+1)+b^2(b^4+1)+c^2(c^4+1)=2[{(a^3) b}+{(b^3)c}+{(c^3)a}]
  5. ALGEBRA

    How many ordered triples of complex numbers(a,b,c) are there such that a^3-b,b^3-c,c^3-a are rational numbers, and a^2(a^4+1)+b^2(b^4+1)+c^2(c^4+1)=2[{(a^3) b}+{(b^3)c}+{(c^3)a}]
  6. algebra, math

    How many ordered triples of complex numbers(a,b,c) are there such that a^3- b,b^3-c,c^3-a are rational numbers, and a^2(a^4+1)+b^2(b^4+1)+c^2(c^4+1)=2[{(a^3) b}+{(b^3)c}+{(c^3)a}]
  7. math

    How many ordered triples of complex numbers(a,b,c) are there such that a^3- b,b^3-c,c^3-a are rational numbers, and a^2(a^4+1)+b^2(b^4+1)+c^2(c^4+1)=2[{(a^3) b}+{(b^3)c}+{(c^3)a}]
  8. math

    How many ordered triples of complex numbers(a,b,c) are there such that a^3- b,b^3-c,c^3-a are rational numbers, and a^2(a^4+1)+b^2(b^4+1)+c^2(c^4+1)=2[{(a^3) b}+{(b^3)c}+{(c^3)a}]
  9. Complex Numbers

    Let z and w be complex numbers such that |z| = |w| = 1, and zw is not equal to -1. Prove that (z + w)/(zw + 1) is a real number.
  10. precalculus, complex numbers

    Let $\omega$ be a complex number such that $\omega^7 = 1$ and $\omega \neq 1$. Let $\alpha = \omega + \omega^2 + \omega^4$ and $\beta = \omega^3 + \omega^5 + \omega^6$. Then $\alpha$ and $\beta$ are roots of the quadratic \[x^2 + px …

More Similar Questions