posted by .

If \cot \left(\sin^{-1} \frac{1}{5}\right) = m, what is the value of m^2?

  • Trigonometry -

    draw a triangle. If sin=1/5, cot=√24

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. algebra

    Can someone please help me do this problem?
  2. Trigonometry

    Hello all, In our math class, we are practicing the trigonometric identities (i.e., sin^2(x)+cos^2(x)=1 or cot(x)=cos(x)/sin(x). Now, we are working on proofs that two sides of an equation are equal (for example, sin(x)*csc(x)=1; sin(x)csc(x)=sin(x)/sin(x)=1; …
  3. Math

    For all values x for which the terms are defined, fidnteh value(s) of k, 0<k<1, such that cot(x/4) - cot(x) = [sin(kx)]/[sin(x/4)sin(x)] PLEASEEEE HELP! ASAP!
  4. trig

    I do not understand these problems. :S I'd really appreciate the help. Use trigonometric identities to transform the left side of the equation into the right side. cot O sin O = cos O sin^2 O - cos^2O = 2sin^2 O -1 (tan O + cot O)/tan …
  5. Trigonometry

    Please review and tell me if i did something wrong. Find the following functions correct to five decimal places: a. sin 22degrees 43' b. cos 44degrees 56' c. sin 49degrees 17' d. tan 11degrees 37' e. sin 79degrees 23'30' f. cot 19degrees …
  6. Trigonometry

    Verify the identities. 1.) √1-COSθ/1+COSθ= 1+SINθ/SINθ 2.) SEC X SIN(π/2-X)= 1 3.) CSC X(CSC X-SIN X)+SIN X-COS X/SIN X + COT X= CSC²X 4.) CSC^4 X-2 CSC²X+1= COT^4 X 5.) CSC^4 θ-COT^4 θ= 2 …
  7. Trigonometry

    ABC is a non-degenerate triangle such that 2\sin \angle B \cdot \cos \angle C + \sin \angle C = \sin \angle A + \sin \angle B, what is the value of \lfloor 100 \frac {AC}{AB} \rfloor ?
  8. Algebra

    a and b are positive numbers that satisfy the equation \frac {1}{a} - \frac {1}{b} = \frac {1}{a+b} . Determine the value of \frac {a^6}{b^6} + \frac {b^6} {a^6} .
  9. Trigonometry

    Given \tan \theta = -\frac{4}{3}, where \frac{\pi}{2} < \theta < \pi, what is the value of \frac{1}{\sin \theta + \cos \theta}?
  10. Math

    Austin bought a new house. The value of his house is modeled by the function H\left( x \right) = 120000{\left( {1.20} \right)^{\left( {\frac{1}{2}x} \right)}} where x is the number of years since he purchased the house. Looking at …

More Similar Questions