physics

posted by .

A 3.00-kg block starts from rest at the top of a 27.5° incline and slides 2.00 m down the incline in 1.20 s.
(a) Find the acceleration of the block.
m/s2

(b) Find the coefficient of kinetic friction between the block and the incline.


(c) Find the frictional force acting on the block.
N

(d) Find the speed of the block after it has slid 2.00 m.
m/s

  • physics -

    on the incline, the block has a normal to the incline component (mg*cosTheta), and a component of gravity force down the plane(mg*sinTheta)


    a. Vf=at , but Vf^2=2ad, so
    (at)^2=2ad
    a=2d/t^2

    b. Forcedown=mg*sinTheta-mu*mg(cosTheta)
    but f=ma, so
    ma= stuff to right, solve for mu.

    c. Forcedown=mg*sinTheta-frictionforce

    d. friction force= mu*mg(cosTheta)

  • physics -

    silly

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    A 2.90 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 2.23 m in 1.90 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction …
  2. physics

    A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …
  3. physics

    A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …
  4. physics

    A 3.00 kg block starts from rest at the top of a 36.0'> incline and slides 2.00 m down the incline in 1.60 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …
  5. physics

    A 3.00 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 1.94 m in 1.70 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction …
  6. physics

    A 3.00 kg block starts from rest at the top of a 33.0° incline and slides 2.00 m down the incline in 1.75 s. Find the coefficient of kinetic friction between the block and the incline
  7. Physics

    A 3.00-kg block starts from rest at the top of a 33.5° incline and slides 2.00 m down the incline in 1.30 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …
  8. Physics

    A 3.00-kg block starts from rest at the top of a 25.5° incline and slides 2.00 m down the incline in 1.75 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …
  9. Physics

    A 2.84 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 1.92 m in 1.90 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction …
  10. physics

    A 3.00-kg block starts from rest at the top of a 31.0° incline and slides 2.00 m down the incline in 1.40 s. (a) Find the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. …

More Similar Questions