posted by .

I need to solve this set of differential equations {y'+(t/2)1, y(0)=1} and then find the limiting value as t approaches infinity. I'm not sure where to start. I found the answer to the differential equation to be: y(t)=e^-t^2/4[e^(r^2/4)dr +Ce^(-t^2/4)where the [ sign represents the definite integral from 0 to t. Now I'm not sure how to evaluate the limit of this as t approahes 0. Any help would be appreciated!

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Differential Equations

    Find the general solution of the differential equation specified. 1) dy/dt= 1/(ty+1+y+1) 2) dy/dx=sec y I got y(x)=arcsin(x) for the second one. I'm not sure what to do with the first one.
  2. calculus-differential equation

    Consider the differential equation: (du/dt)=-u^2(t^3-t) a) Find the general solution to the above differential equation. (Write the answer in a form such that its numerator is 1 and its integration constant is C). u=?
  3. differential equations

    solve the differential equation by seperation of variables 5. y'=xy/2ln y
  4. Differential Equations

    Solve the seperable differential equation for U. du/dt = e^(5u+7t) - Using the following initial condition U(0) = 12
  5. Differential Equations

    Solve the differential equation below with initial conditions. Compute the first 6 coefficient. Find the general pattern. (1-x)y"-y'+xy=0 y(0)=1, y'(0)=1
  6. Differential Equations (Another) Cont.

    For the following initial value problem: dy/dt=1/((y+1)(t-2)) a)Find a formula for the solution. b) State the domain of definition of the solution. c) Describe what happens to the solution as it approaches the limit of its domain of …
  7. Differential Equations

    Consider the differential equation: dy/dt=y/t^2 a) Show that the constant function y1(t)=0 is a solution. b)Show that there are infinitely many other functions that satisfy the differential equation, that agree with this solution when …

    1) What are the equilibrium solutions to the differential equation and determine if it is stable or unstable with the initial condition y(-4)=1: 0.1(y+2)(4-y) 2) Use Euler's method with step size=0.5 and initial condition y(0)=3 to …
  9. calculus

    hi! just needed help on an FRQ for ap calculus ab. let me know if you have any questions for me. I'm just really confused as far as what I am meant to do. If you could walk me through it that would be amazing. THANKS!! A population …
  10. Differential Equations

    in this problem we consider an equation in differential form M dx+N dy=0 (2y-2xy^2)dx+(2x-2x^2y)dy=0 give implicit general solutions to the differential equation. F(x,y)=

More Similar Questions