Calculus  Optimization
posted by Nevin .
A cylindrical container with a volume of 3000 cm^3 is constructed from two types of material. The side and bottom of the container cost $0.10/cm^2 and the top of the container costs $0.20/cm^2.
a) Determine the radius and height that will minimize the cost.
b) Determine the ratio of diameter to height.
Could you please help me with these questions please and thank you

Calculus  Optimization 
bobpursley
Cost=.10*(pi*r^2+2Pi*r*h)+.20PIr^2
volume= PIr^2h or h= volume/PIr^2
h=3000/(PIr^2)
Put that into the cost function for h.
Then take the derivative of cost with respect to r (dCost/dr), set equal to zero, solve for r. 
Calculus  Optimization 
jame
lol i need help on the same one
Respond to this Question
Similar Questions

optimization
While searching for the minimum of ƒ(x) [x2 (x 1)2][x2 (x 1)2] 1 2 1 2 we terminate at the following points: (a) x(1) [0, 0]T (b) x(2) [0, 1]T (c) x(3) [0, 1]T (d) x(4) [1, 1]T Classify each point. AND 3.17. Suppose … 
Calculus optimization
A rectangular storage container with a lid is to have a volume of 8 m. The length of its base is twice the width. Material for the base costs $4 per m. Material for the sides and lid costs $8 per m. Find the dimensions of the container … 
HELP!! OPTIMIZATION CALCULUS
A rectangular storage container with a lid is to have a volume of 8 m. The length of its base is twice the width. Material for the base costs $4 per m. Material for the sides and lid costs $8 per m. Find the dimensions of the container … 
Algebra
Use this proportionality: A correlation V square 2/3 How much more material is needed to manufacture an industrial plastic container with twice the volume of a similar container? 
calculus
A cylindrical container is to hold 20π cm^3. The top and bottom are made of a material that costs $0.40 per cm^2. The material for the curved side costs $0.32 per cm^2. Find the height in centimeters of the most economical container. 
math
A closed cylindrical storage container with a volume of 2800 cubic inches. The material for the top and bottom will cost $3 per square inch and the material for the sides will cost $4 per square inch. A) What dimensions of the container … 
Calculus
A manufacturer needs to produce a cylindrical can with a volume (capacity) of 1000cm cubed. The top and the bottom of the container are made of material that costs $0.05 per square cm, while the side of the container is made of material … 
Calculus
A manufacturer needs to produce a cylindrical can with a volume (capacity) of 1000cm cubed. The top and the bottom of the container are made of material that costs $0.05 per square cm, while the side of the container is made of material … 
Calculus
A rectangular storage container with an open top is to have a volume of 10 . The length of its base is twice the width. Material for the base costs $12 per square meter. Material for the sides costs $5 per square meter. Find the cost … 
Calculus
A rectangular storage container with an open top is to have a volume of 10 m3. The length of its base is twice the width. Material for the base costs $9 per m2. Material for the sides costs $150 per m2. Find the dimensions of the container …