math
posted by ct .
differentiate y=tanx^2/1+cosx and y=e^x^3tan6x

math 
Reiny
I will assume you meant
y = tan (x^2) / (1 + cosx)
by quotient rule,
dy/dx = ( (1+cosx)(sec^2 (x^2))(2x)  tan x^2 (sinx) )/(1+cosx)^2
I don't know what level of simplification you need
y = e^(x^3)  tan 6x
dy/dx = (3x^2)e^(x^3)  6 sec^2 (6x)
Respond to this Question
Similar Questions

PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Mathematics  Trigonometric Identities
Prove: sinx + tanx = tanx (1 + cosx) What I have so far: LS: = sinx + tanx = sinx + (sinx / cosx) = (sinx) (cosx) + sinx / cos = tanx (cosx + sinx) I don't know what to do now 
Mathematics  Trigonometric Identities
Prove: (tanx)(sinx) / (tanx) + (sinx) = (tanx)  (sinx) / (tanx)(sinx) What I have so far: L.S. = (sinx / cosx) sinx / (sinx / cosx) + sinx = (sin^2x / cosx) / (sinx + (sinx) (cosx) / cosx) = (sin^2x / cosx) / (cosx / sinx + sinxcosx) 
Math
Proving identity (sinx+tanx)/(cosx+1)=tanx RS: (sinx+(sinx/cosx))/(cosx+1) ((sinxcosx/cosx)+(sinx/cosx))x 1/(cosx+1) sinx(cosx+1)/cosx x 1/(cosx+1) sinx/cosx = tanx RS = LS How did sinxcosx/cosx turn to sinx(cosx+1)? 
Trigo
Given that a^2+b^2=2 and that (a/b)= tan(45degee+x), find a and b in terms of sinx and cosx. I don't know what i'm supposed to do, and i don't come to an answer! Help, thanks! my workings: tan(45+x)= (1+tanx)/(1tanx) a/b = (1+tanx)/(1tanx) … 
Trigonometry
Given that a^2+b^2=2 and that (a/b)= tan(45degee+x), find a and b in terms of sinx and cosx. I don't know what i'm supposed to do, and i don't come to an answer! Help, thanks! my workings: tan(45+x)= (1+tanx)/(1tanx) a/b = (1+tanx)/(1tanx) … 
maths  trigonometry
I've asked about this same question before, and someone gave me the way to finish, which I understand to some extent. I need help figuring out what they did in the second step though. How they got to the third step from the second. … 
Math 12
Simplify #1: cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer cscxtanx/sinx+cosx? 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
precal
1/tanxsecx+ 1/tanx+secx=2tanx so this is what I did: =tanx+secx+tanxsecx =(sinx/cosx)+ (1/cosx)+(sinx/cosx)(1/cosx) =sinx/cosx+ sinx /cosx= 2tanxI but I know this can't be correct because what I did doesn't end as a negatvie:( …