# Math

posted by .

A conical tank (with its vertex down) is 8 feet tall and 6 feet across its diameter. If water is flowing into the tank at the rate of 2 feet3/min, find the rate at which the water level is rising at the instant when the water depth is 2.5 feet.

• Math -

Water depth = y
Surface water radius r = 3 y/8 ft

Water volume V = (1/3)*pi*(3y/8)^2*y
= (3 pi/64)y^3

dV/dt = 2.0 ft^3/min = (9*pi*y^2/64)*dy/dt = pi*r^2*(dy/dt)

When y = 2.5 ft
dy/dt = 4.53 ft/min

## Similar Questions

1. ### calculus-rate problem

A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.
2. ### calculus

A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet …
3. ### math - calc

A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
4. ### math - calc

A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
5. ### cal

A conical tank (with vertex down) is 12 feet across the top and 18 feet deep. If water is flowing into the tank at a rate of 18 cubic feet per minute, find the rate of change of the depth of the water when the water is 10 feet deep. …
6. ### Calculus (math)

A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
7. ### Math-How do I do this problem?

An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft3/min, find the rate of change of the depth of the water when the water is 10 feet deep.