Calc,
posted by CMM .
Find the value of the definite integral:
int= integral sign
int((x + 2)/(x^(3/2)),x= 16..25)dx
I have no idea how to start this... would I get rid of the fraction?
Respond to this Question
Similar Questions

Math
Find the integrals. (show steps) (integral sign) xe^(4x^2) I think this how is how its done: (integral sign) xe^(4x^2) it's a u du problem let u=4x^2 so, du=8x dx now you have an x already so all u need is 8 inside and and 1/8 outside … 
Calculus  Integration
Hello! I really don't think I am understanding my calc hw. Please help me fix my errors. Thank you! 1. integral from 0 to pi/4 of (tanx^2)(secx^4)dx It says u = tan x to substitute So if I use u = tan x, then my du = secx^2 then I … 
Calculus  Center of Mass
Find the exact coordinates of the centroid given the curves: y = 1/x, y = 0, x = 1, x = 2. X = 1/Area*Integral from a to b: x*f(x)dx Y = 1/Area*Integral from a to b: [(1/2)*(f(x))^2]dx How do I find the area for this? 
Calc.
Find the value of the definite integral using sums, not antiderivatives: int= integral sign int((x + 2)/(x^(3/2)),x= 16..25)dx Please help. 
Calc. Help Please.
Find the value of the definite integral using sums, not antiderivatives: int= integral sign int((x + 2)/(x^(3/2)),x= 16..25)dx Please help... even just showing me how to get started would be greatly appreciated. 
Calc
If we know that the definite integral from 6 to 3 of f(x) equals 6, the definite integral from 6 to 5 equals 2 and the definite integral from 4 to 3 equals 4 then: What is the definite integral from 5 to 4? 
Calculus (urgent help)
consider the function f that is continuous on the interval [5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: … 
calculus
consider the function f that is continuous on the interval [5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: … 
calculus (please with steps and explanations)
consider the function f that is continuous on the interval [5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: … 
calculus
use symmetry to evaluate the double integral (1+x^2siny+y^2sinx)dA, R=[pi,pi]x[pi,pi]. let g(x) and h(y) be two functions: int(c to d)int(a to b)(g(x,y)+h(x,y))dxdy=int(c to d)int(a to b)g(x,y)dxdy+int(c to d)int(a to b)h(x,y)dxdy