physics
posted by Ashley .
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 3.30 m. Two of the spheres have a mass of 3.10 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?

physics 
bobpursley
Well, the force on the third is GMm/3.3^2 * 2 cos30
so the acceleratoin of the third must be F/m=a=GM/3.3^2 * 2 cos30
check that. 
physics 
Ashley
So, for the acceleration I got 1.096e11 is this right?
Respond to this Question
Similar Questions

Physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.60 m. Two of the spheres have a mass of 2.20 kg each. The third sphere (mass unknown) is released from rest. Considering … 
Advance Physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.48 m. Two of the spheres have a mass of 2.18 kg each. The third sphere (mass unknown) is released from rest. Considering … 
physics
sorry i have about 5 questions on this homework packet that i just can't figure out.... hope you can help me A bowling ball (mass = 7.2 kg, radius = 0.12 m) and a billiard ball (mass = 0.41 kg, radius = 0.028 m) may each be treated … 
physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 3.10 m. Two of the spheres have a mass of 3.20 kg each. The third sphere (mass unknown) is released from rest. Considering … 
Physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 3.10 m. Two of the spheres have a mass of 3.20 kg each. The third sphere (mass unknown) is released from rest. Considering … 
physics
Three identical conducting spheres are located at the vertices of an equilateral triangle ABC. Initially the charge the charge of the sphere at point A is q A =0 and the spheres at B and C carry the same charge q A =q B =q. It is known … 
physics
Three identical conducting spheres are located at the vertices of an equilateral triangle ABC. Initially the charge the charge of the sphere at point A is qA=0and the spheres at B and C carry the same charge qB=qC=q. It is known … 
Physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 2.40 m. Two of the spheres have a mass of 3.40 kg each. The third sphere (mass unknown) is released from rest. Considering … 
Physics
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 2.50 m. Two of the spheres have a mass of 4.40 kg each. The third sphere (mass unknown) is released from rest. Considering … 
Physic
Three uniform spheres of masses m1 = 3.50 kg, m2 = 4.00 kg, and m3 = 5.50 kg are placed at the corners of a right triangle (see figure below). Calculate the resultant gravitational force on the object of mass m2, assuming the spheres …