physics
posted by beth .
A block of mass 12.0 kg slides from rest down a frictionless 35.0° incline and is stopped by a strong spring with k = 1.50 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

the energy going into the spring= m*g*3/sin35
that has to equal 1/2 k x^2 solve for x
Respond to this Question
Similar Questions

physic
A block of mass 12.0 kg slides from rest down a frictionless 34.0° incline and is stopped by a strong spring with k = 2.5 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. … 
PHYSICS
A 16 kg block slides down a 30 degree frictionless incline where it is stopped by a strong Hook's Law spring at the bottom. The spring constant is k = 9.8 x10^4 N/m. If the block slides 9 m from the point where it was released (from … 
college physics
A block of mass 12.0 kg slides from rest down a frictionless 35.0° incline and is stopped by a strong spring with k = 4.00 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the … 
physics
A block of mass 12.0 kg slides from rest down a frictionless 35.0° incline and is stopped by a strong spring with k = 4.00 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the … 
physics
A 0.50kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring … 
physics
A 0.50kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring … 
physics please help :/
A 0.50kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring … 
physics
A 4.6 kg block starts at rest and slides a distance d down a frictionless 31.0° incline, where it runs into a spring. The block slides an additional 24.0 cm before it is brought to rest momentarily by compressing the spring, whose … 
Physics
A block of mass 11.2 kg slides from rest down a frictionless 24.0° incline and is stopped by a strong spring with a spring constant 31.3 kN/m (note the unit). The block slides 8.90 m from the point of release to the point where it … 
Physics
A block of mass 13.9 kg slides from rest down a frictionless 40.0° incline and is stopped by a strong spring with a spring constant 32.3 kN/m (note the unit). The block slides 7.80 m from the point of release to the point where it …