Physics
posted by Jerome .
A string is under a tension of 700.0 N. A 1.5 m length of the string has a mass of 4.5 grams. What is the speed of a transverse wave of wavelength 0.50 m in this string? What is the frequency of the wave?

velocity= sqrt (tension/linearmassdensity)
One the last part, it am not certain that .50 equals onehalf wavelength, it does not say that.
Respond to this Question
Similar Questions

Physics
The mass of a string is 6.0 x 10^3 kg, and it is stretched so the tension in it is 195 N. A transverse wave traveling on this string has a frequency of 260 Hz and a wavelength of 0.60 m. What is the length of the string? 
physics
Transverse waves with a speed of 50.0 m/s are to be produced on a stretched string. A 5.00m length of string with a total of 60 grams is used. a) what is the required tension in the string? 
physics
The mass of a string is 2.5 × 103 kg, and it is stretched so that the tension in it is 250 N. A transverse wave traveling on this string has a frequency of 300 Hz and a wavelength of 0.45 m. What is the length of the string? 
physics
The mass of a string is 8.40 103 kg, and it is stretched so the tension in it is 225 N. A transverse wave traveling on this string has a frequency of 260 Hz and a wavelength of 0.60 m. What is the length of the string? 
Physics
The mass of a string is 6.8 x 103 kg, and it is stretched so that the tension in it is 210 N. A transverse wave traveling on this string has a frequency of 190 Hz and a wavelength of 0.67 m. What is the length of the string? 
Physics
The mass of a string is 6 grams, and it is stretched so that its tension is 150 N. A transverse wave travelling on this string has a frequency of 160 Hz and a wavelength of 0.40 m. What is the length of this string? 
Physics: HELP PLS
The speed of a wave in a string is given by v = Ö(FT/m), where FT is the tension in the string and m = mass / length of the string. A 2.00 m long string has a mass of 15.5 g. A 93 g mass is attached to the string and hung over a pulley. … 
physics
The speed of a wave in a string is given by v = sqrt (FT/m), where FT is the tension in the string and m = mass / length of the string. A 2.00 m long string has a mass of 28.50 g. A 1024 g mass is attached to the string and hung over … 
physics
The speed of a wave in a string is given by v = sqrt (FT/m), where FT is the tension in the string and m = mass / length of the string. A 2.00 m long string has a mass of 28.50 g. A 1024 g mass is attached to the string and hung over … 
physics
The speed of a wave in a string is given by v = sqrt (FT/m), where FT is the tension in the string and m = mass / length of the string. A 2.00 m long string has a mass of 28.50 g. A 1024 g mass is attached to the string and hung over …