Calculus

posted by .

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour

  • Calculus -

    draw the figure, at noon, then at 4PM.

    At 4 pm, I have a right triangle of A,B of sides (base 10+19*4; altitude 15*4)

    d^2=(10+va*t)^2 + (vb*t)^2

    2d dd/dt=2(10*va*t)va+2(vb*t)vb

    so when t=4, solve for dd/dt

  • Calculus -

    9898

  • Calculus -

    khj

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  2. Calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
  3. Calculus

    At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 22 knots and ship B is sailing north at 18 knots. How fast (in knots) is the distance between the ships changing at 4 PM?
  4. CALCULUS

    At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 23 knots and ship B is sailing north at 19 knots. How fast (in knots) is the distance between the ships changing at 5 PM?
  5. calculus

    At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 25 knots and ship B is sailing north at 25 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
  6. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  7. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  8. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  9. Calculus

    At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  10. calculus

    At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 24 knots and ship B is sailing north at 16 knots. How fast (in knots) is the distance between the ships changing at 3 PM?

More Similar Questions