maths

posted by .

prove that 1+x < e^x < 1+ xe^x for x>0 using the mean value theorem

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    Let f(x) = (x+1)/(x-1). Show that there are no vlue of c such that f(2)-f(0) =f'(c)(2-0). Why does this not contradict the Mean Value Theorem?
  2. Math Calculus

    The Image Theorem: The image theorem, a corollary of the intermediate value theorem, expresses the property that if f is continuous on the interval [a, b], then the image (the set of y-values) of f on [a,b] is all real numbers between …
  3. math

    verify that the function satisfies the hypothesis of the mean value theorem on the given interval. then find all numbers c that satisfy the conclusion of the mean value theorem. f(x) = x/(x+2) , [1,4]
  4. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  5. Math - Calculus

    Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
  6. Calculus

    Verify the hypothesis of the mean value theorem for each function below defined on the indicated interval. Then find the value “C” referred to by the theorem. Q1a) h(x)=√(x+1 ) [3,8] Q1b) K(x)=(x-1)/(x=1) [0,4] Q1c) Explain …
  7. maths-calculus

    mean value theorem prove sq root 9.1 is less than or equal to 3+1/60
  8. Calculus

    Given f(x) = -1/x, find all c in the interval [-3, -½] that satisfies the Mean Value Theorem. A. c= -sqrt(3/2) B. c= +or- sqrt(3/2) C. The Mean Value Theorem doesn’t apply because f is not continuous at x=0 D. The Mean Value Theorem …
  9. Calculus

    show that ((x − 1)/x) <( ln x) < (x − 1) for all x>1 Hint: try to apply the Mean Value Theorem to the functions f(x) = lnx and g(x) = xlnx. I'm having trouble applying the mean value theorem
  10. Calculus

    Let f(x)=αx^2+βx+γ be a quadratic function, so α≠0, and let I=[a,b]. a) Check f satisfies the hypothesis of the Mean Value Theorem. b)Show that the number c ∈ (a,b) in the Mean Value Theorem is the midpoint of the interval …

More Similar Questions