Post a New Question


posted by .

Hi ya!
So I got a question like when I'm rationalzing a denomenator in order to get simple radical form I really don't know what to do

for example this problem


ok so I know your trying to get it so it's a perfect sqaure right so I can legally write this

(6^(2^-1)-3^(2^-1))^-1 A = (6 - 3)^-1 = 3^-1

or a simplified formula

(6^(2^-1)-3^(2^-1))^-1 A = 3^-1
and solve for A were A equals the value needed to get the perfect square 6-3 or simply 3 right so I solved


and I get some value which is equal to
but where s the proof that this is correct using that formula all you get is some number and I have no idea how you get this answer I know you just make the negetive positive but what allows you to do that?????

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

More Related Questions

Post a New Question