Determine a formula for sec(2è) using both sec(è) and csc(è).

Determine a formula for csc(2è) using both sec(è) and csc(è).

To determine a formula for sec(2θ) using both sec(θ) and csc(θ), we can use the double-angle identity for secant, which states:

sec(2θ) = 1 / cos(2θ)

Now let's use the double-angle identity for cosine:

cos(2θ) = cos²(θ) - sin²(θ)

First, we need to express the formula in terms of sec(θ) and csc(θ), so let's rewrite it using the reciprocal identities:

cos(2θ) = 1 - sin²(θ) / cos²(θ)

Now, recall that secant is the reciprocal of cosine:

sec(θ) = 1 / cos(θ)

Hence, we have:

cos(2θ) = 1 - sin²(θ) / (1 / sec²(θ))

Replacing the terms with sec(θ) and csc(θ):

cos(2θ) = 1 - (1 / csc²(θ)) / (1 / sec²(θ))

Simplifying the equation:

cos(2θ) = 1 - sec²(θ) / csc²(θ)

Finally, using the reciprocal identity for tangent:

sec(θ) = 1 / cos(θ) = cos(θ) / (cos²(θ) - sin²(θ))

And the reciprocal identity for cotangent:

csc(θ) = 1 / sin(θ) = cos(θ) / (cos²(θ) - sin²(θ))

We can rewrite the equation as:

cos(2θ) = 1 - (sec²(θ) / csc²(θ))

= 1 - (cos²(θ) / sin²(θ)) / (cos²(θ) / sin²(θ))

= 1 - (cos²(θ) / sin²(θ)) * (sin²(θ) / cos²(θ))

= 1 - 1

= 0

Therefore, the formula for sec(2θ) in terms of sec(θ) and csc(θ) is 0.

To determine a formula for csc(2θ) using both sec(θ) and csc(θ), we can use the double-angle identity for cosecant, which states:

csc(2θ) = 2 / (2 * sin(θ) * cos(θ))

Now let's rewrite the formula using the reciprocal identities for sine and cosine:

csc(2θ) = 1 / (sin(θ) * cos(θ))

Next, let's express the formula in terms of sec(θ) and csc(θ):

csc(2θ) = 1 / (1 / csc(θ) * 1 / sec(θ))

Using the reciprocal identity for sine:

csc(θ) = 1 / sin(θ)

We can rewrite the formula as:

csc(2θ) = 1 / (1 / (1 / sin(θ)) * 1 / sec(θ))

= 1 / (1 / (csc(θ) / sec(θ)))

= sec(θ) / csc(θ)

= sec(θ) * sin(θ)

Therefore, the formula for csc(2θ) in terms of sec(θ) and csc(θ) is sec(θ) * sin(θ).