Physics
posted by jack .
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 N is applied to each end so as to stretch it back to its original length. The ruler has a crosssectional area of 1.50 105 m2, and it is made from a material whose coefficient of linear expansion is 2.10 105 (C°)1. What is Young's modulus for the material from which the ruler is made?

I will be happy to critique your thinking. Set the linear expansion equation equal to the HookÃ©s law expansion.

..
Respond to this Question
Similar Questions

Physics
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 … 
Physics
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 … 
math (ruler)
I need help finding the mesurment in a ruler the little bitty mark could you pull up a ruler for me with all the marks . 
physics
A ruler stands vertically against a wall. It is given a tiny impulse at such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that . The ruler has mass … 
Physics Classical Mechanics
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
PHYSICS(HELP!!)
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
physics(HELP)
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
PHYSICS!!! HELP
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
Physics(URGENT!!!!)
A ruler stands vertically against a wall. It is given a tiny impulse at Î¸=0âˆ˜ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that Ï‰(Î¸=0âˆ˜)=0. … 
Physics
A steel ruler is calibrated to read true at 21.6 °C. A draftsman uses the ruler at 44.5 °C to draw a line on a 44.5 °C copper plate. As indicated on the warm ruler, the length of the line is 0.314 m. To what temperature should the …