# trig

sinx = 4/5 and x terminates in Quadrant II

Find sin2x and cos2x

How to get the answers, which are sin2x = -24/25, cos2x = -7/25?

1. 👍 0
2. 👎 0
3. 👁 503

## Similar Questions

1. ### dai so

chung minh dang thuc (1+Sin2x)/Cos2x=Tan(pi/4+x)

2. ### Trigonometry

find sin2x, cos2x, and tan2x if sinx= -2/sqrt 5 and x terminates in quadrant III

3. ### Trigonometry

Simplify the expression using trig identities: 1. (sin4x - cos4x)/(sin2x -cos2x) 2. (sinx(cotx)+cosx)/(2cotx)

4. ### Math - Trig - Double Angles

Prove: sin2x / 1 - cos2x = cotx My Attempt: LS: = 2sinxcosx / - 1 - (1 - 2sin^2x) = 2sinxcosx / - 1 + 2sin^2x = cosx / sinx - 1 = cosx / sinx - 1/1 = cosx / sinx - sinx / sinx -- Prove: 2sin(x+y)sin(x-y) = cos2y - cos2x My

1. ### math

d2y/dx2+9y=cos2x+sin2x

2. ### PreCalculus

Sin5x cos2x + cos5x sin2x=

3. ### pre calc

Find the exact value of sin(x-y) if sinx=-3/5 in Quadrant III and cosy=5/13 in Quadrant I.

4. ### Trig

Simplify: (cosx + cos2x + cos3x + cos4x + cos5x + cos6x) / (sinx + sin2x + sin3x + sin4x + sin5x + sin6x) into a single Cotangent function. Using the sum-to-products, I was able to get remove some of the addition in attempts to

1. ### MATH

Simplify: Sin2x/1-Cos2x

2. ### trig

tanx = 5/12 and sinx

3. ### Math

Solve the equation 2cos2x = √3 for 0°≤x≤360° I did this: cos2x = √3 /2 2x=30 x=15 x=15, 165, 195, 345 Is this correct? Solve the equation √3 sin2x + cos2x = 0 for -π≤x≤π No idea how to approach this one Thanks a

4. ### Trigonometry

Verify the identity. sin2x/cosx + sinx = 2sinx Solve for all values of x: 6cos2x-7cosx-3=0 If f(x)=cos1/2x-sin2x find the value of f(pi)