# Homework Help Calculus

Find the linear approximation L(x)of the function f(x)=cos(pi/(6)x) at the point x=1 and use it to estimate the value of cos(13pi/72).
Here's what I did so far:
L(x)=sqrt(3)/2-1/12pi(x-1)+0((x-1)^2)

How do I find cos(13pi/72)

1. f' = -pi/6 sin(pi/6 x)
f'(1) = -pi/6 (1/2) = -pi/12
f(1) = √3/2

So, the tangent line is

y-√3/2 = -pi/12 (x-1)

13pi/72 = pi/6 (13/12)

So, plug in x=13/12 into the equation of the line. Note that 13/12 is close to 1, so the approximation should be close to cos(13pi/72)

which you can get using any scientific calculator.

posted by Steve

First Name

## Similar Questions

1. ### Math

3. find the four angles that define the fourth root of z1=1+ sqrt3*i z = 2 * (1/2 + i * sqrt(3)/2) z = 2 * (cos(pi/3 + 2pi * k) + i * sin(pi/3 + 2pi * k)) z = 2 * (cos((pi/3) * (1 + 6k)) + i * sin((pi/3) * (1 + 6k))) z^(1/4) =
2. ### Trigonometry

If cos(a)=1/2 and sin(b)=2/3, find sin(a+b), if 1) Both angles are acute; Answer: (sqrt(15)+2)/6 ii) a is an acute angle and pi/2 < b < pi; Answer: (2-sqrt(15))/6 2. Find the exact value of the six trigonometric functions of
3. ### trig

find exact value cos(13pi/15)cos(-pi/5)-sin(13pi/15)sin(-pi/5)
4. ### Trigonometry - Checking my work

Find the sum of the three smallest positive values of theta such that 4 cos^2(2theta-pi) =3. (Give your answer in radians.) Hi guys, I've been struggling with this problem. Here's my thinking about the problem: we can rewrite the
5. ### pre-calculus

use a sum or difference formula to find the exact of the trigonometric function cos(-13pi/12)
6. ### calculus

Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x)
7. ### calc

find the area between the x-axis and the graph of the given function over the given interval: y = sqrt(9-x^2) over [-3,3] you need to do integration from -3 to 3. First you find the anti-derivative when you find the
8. ### Math

Given that cos 13pi/18=sin y, first express 13pi/18 as a sum of pi/2 and an angle, and then apply a trigonometric identitiy to determine the measure of angle y.
9. ### Calc.

Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x)
10. ### math

A trigonmetric polynomial of order n is t(x) = c0 + c1 * cos x + c2 * cos 2x + ... + cn * cos nx + d1 * sin x + d2 * sin 2x + ... + dn * sin nx The output vector space of such a function has the vector basis: { 1, cos x, cos 2x,

More Similar Questions