physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is projected into a liquid so that it initially has a horizontal velocity of u in the +x direction as shown. The initial speed in the vertical direction (y) is zero. The gravitational acceleration is g. Consider the cartesian coordinate system shown in the figure (+x to the right and +y downwards).
Express the answer of the following questions in terms of some or all of the variables C1, r, m, g, vx, vy, u and t (enter C_1 for C1, v_x for vx and v_y for vy). Enter e^(z) for exp(z) (the exponential function of argument z).
(a) What is component of the acceleration in the x direction as a function of the component of the velocity in the x direction vx? express your answer in terms of vx, C1, r, g, m and u as needed:
ax=
acceleration in the y direction as a function of the component of the velocity in the y direction vy? express your answer in terms of vy, C1, r, g, m and u as needed:
ay=
(c) Using your result from part (a), find an expression for the horizontal component of the ball's velocity as a function of time t? express your answer in terms of C1, r, g, m, u and t as needed: (enter e^(z) for exp(z)).
vx(t)=
(d) Using your result from part (b), find an expression for the vertical component of the ball's velocity as a function of time t? express your answer in terms of C1, r, g, m, u and t as needed: (enter e^(z) for exp(z)).
vy(t)=
(e) How long does it take for the vertical speed to reach 99% of its maximum value? express your answer in terms of C−1, r, g, m and u as needed:

ax= (C_1*r*v_x)/m
posted by pamporis
Respond to this Question
Similar Questions

physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
PHYSICS(HELP)
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
PHYSICS(PLS HELP)
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
Physisc(help)
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
physics
At low speeds (especially in liquids rather than gases), the drag force is proportional to the speed rather than it's square, i.e., F⃗ = −C1rv⃗ , where C1 is a constant. At time t = 0, a small ball of mass m is 
mitx 8.01x Classical Mechanics
For the following 3 vectors A⃗ =2y^+3z^ B⃗ = 3 x^+2z^ C⃗ = 3 x^+3y^ Calculate the following: (a) A⃗ ⋅(B⃗ +C⃗ )= (b) D⃗ =A⃗ ×(B⃗ +C⃗ ) Dx= Dy= Dz= (c) A⃗ 
phy
Given three vectors a⃗ =−i⃗ −4j⃗ +2k⃗ , b⃗ =3i⃗ +2j⃗ −2k⃗ , c⃗ =2i⃗ −3j⃗ +k⃗ , calculate a⃗ ⋅(b⃗ ×c⃗ )