Calculus

The velocity function is v(t)=t^2-5t+6 for a particle moving along a line. Find the displacement of the particle during the time interval [-3,6].

  1. 👍
  2. 👎
  3. 👁
  1. s(t) = 1/3 t^3 + 5/2 t^2 + 6t
    evaluate s(6)-s(-3)

    not sure what negative time involves, but hey, it's just math...

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    a particle starts at time t = 0 and moves along the x axis so that its position at any time t>= 0 is given by x(t) = ((t-1)^3)(2t-3) a.find the velocity of the particle at any time t>= 0 b. for what values of t is the velocity of

  2. CALCULUS PLEASE HELP!!!

    SHOW WORK PLEASE!!! The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 2 sin πt + 3 cos πt, where t is measured in seconds. (Round your answers to

  3. Calculus

    The acceleration function (in m/s2) and the initial velocity v(0) are given for a particle moving along a line. a(t) = 2t + 2, v(0) = −3, 0 ≤ t ≤ 5 (a) Find the velocity at time t. v(t) = ______ m/s (b) Find the distance

  4. physics

    the motion of a particle along a straight line is described by the function x=(2t-3)^2 where x is in metres and t is in seconds. A)find the position ,veocity and acceleration at t=2 sec. B) find the velocity of the particle at

  1. calculus

    a particle moves along a straight line and has an acceleration given by a(t) = 6t+4 where a is measured in cm/sec^2. Its initial velocity is -6 cm/sec. Initially it sits 9 cm to the right of the origin. Find its displacement

  2. Calculus

    The velocity function (in meters per second) is given for a particle moving along a line. v(t) = 3t − 7, 0 ≤ t ≤ 3 (a) Find the displacement. -7.5 m (b) Find the distance traveled by the particle during the given time

  3. Calculus

    Let f be the function given by f(t) = 2ðt + sin(2ðt) a) Find the value of t in the open interval (0,20 for which the line tangent at (t, f(t)) is parallel to the line through (0,0) and (2,4ð) b) Suppose the given function

  4. Calculus

    The acceleration function (in m/s2) and the initial velocity v(0) are given for a particle moving along a line. a(t) = 2t + 2, v(0) = −3, 0 ≤ t ≤ 5 (a) Find the velocity at time t. v(t) = t^2+2t-3 m/s (b) Find the distance

  1. Calculus (Derivatives)

    Two particles are moving in straight lines. The displacement (in meters) of particle 1 is given by the function e^(4cos(t)) , where t is in seconds. The displacement (in meters) of particle 2 is given by the function -(t^3)/(3) -

  2. calculus

    5. A particle moves along the y – axis with velocity given by v(t)=tsine(t^2) for t>=0 . a. In which direction (up or down) is the particle moving at time t = 1.5? Why? b. Find the acceleration of the particle at time t= 1.5. Is

  3. math

    The velocity function, in feet per second, is given for a particle moving along a straight line. v(t) = 3t − 2, 0 ≤ t ≤ 3 Find the displacement 15/2 Find the total distance that the particle travels over the given interval

  4. Calculus

    The velocity function is v(t)=t^2−5t+4 for a particle moving along a line. Find the displacement and the distance traveled by the particle during the time interval [-1,5]. So I found the antiderivative of the function, which

You can view more similar questions or ask a new question.