Calculus

By recognizing each series below as a Taylor series evaluated at a particular value of x, find the sum of each convergent series.

A) 1+5 + (5^2)/(2!)+(5^3)/(3!)+(5^4)/(4!)+...+ (5^k)/(k!)+...=

B) 1-(2^2)/(2!)+(2^4)/(4!)-(2^6)/(6!)+...+((-1)^(k)2^(2k))/((2k)!) +...=

  1. 👍
  2. 👎
  3. 👁
  1. e^x = 1+x+x^2/2! + ...
    Looks like the series is e^5

    Since cos(x) = 1 - x^2/2! + ...
    Looks like the series is cos(2)

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Which one of the following statements is true about the series the series from n equals 1 to infinity of the quotient of negative 1 raised to the nth power and n ? (4 points) Is this A or B? I am a little confused. A) It is

  2. math

    The sum of the 1st nine terms of an arithmetic series is 216. The 1st,3rd and the 7th terms of series form the 1st three terms of a geometric series. Find the 1st term and the constant difference of the arithmetic series ?

  3. Calculus

    Use the alternating series test to determine the convergence/divergence of the series the summation from n equals 1 to infinity of the product of negative 1 raised to the nth power and the quotient of 3 times n and the quantity 4

  4. Technology

    When using a line graph, why is it inportant to only graph 1 - 3 series of data? A line graph in Microsoft Excel will not allow you to graph more than 3 series of data. It will not show changes over time of you use more than 3

  1. Calculus

    Select the true statement for the series the summation from n=1 to infinity of n!/(2n-1) a) The series converges by the ratio test. b) The series diverges by the integral test. c) The series converges by the integral test. d) The

  2. algebra

    Consider the infinite geometric series below. a. Write the first 4 terms of the series b. Does the series diverge or converge? c. If the series has a sum, find the sum. infinity sigma n=2 (-2)^n-1

  3. calculus

    Find the Taylor series centered at x = -1 for the function f(x) = x(e^x)

  4. calculus-- need help desperately!

    The Taylor series about x=5 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x=5 is given by f^(n) (5)= (-1)^n(n!)/((2^n)(n+2)), and f(5)=1/2. Write third degree

  1. calculus

    how do i use a taylor series centered at some x value to approximate the value of the function centered at a different x value? for example, if im given some taylor series centered at 5 of f(x) but i want to find f(3), how do i do

  2. Calculus

    Consider the series 1/4+1/6+1/9+2/27+4/81+.... Does the series converge or diverge? Is the series arithmetic, geometric, neither, or geometric with an absolute value of the common ration being greater/ less than 1?

  3. Integral Calculus

    We can use this power series to approximate the constant pi: arctan(x) = (summation from n = 1 to infinity) of ((-1)^n * x^(2n+1))/(2n+1) a) First evaluate arctan(1) without the given series. (I know this is pi/4) b) Use your

  4. Calculus

    Which of the following statements is true for the series the summation from k=1 to infinity of the sin(k)/k^2? (10 points) A) The series converges conditionally but not absolutely. B) The series is divergent. C) The series cannot

You can view more similar questions or ask a new question.