Proving Trigonometric Identities
1. sec^2x + csc^2x= (sec^2 x)(csc^2 x)
2. sin ^3 x / sin x - cos 3x / cos x = 2
3. 1- cos x/ sin x= sin x/ 1+ cos x
4. 2 sin x cos ^2 (x/2)- 1/x sin (2x) = sinx
5. cos 2 x + sin x/ 1- sin x= 1+ 2 sin x

  1. 👍
  2. 👎
  3. 👁
  1. Indicate your specific subject in the "School Subject" box, so those with expertise in the area will respond to the question.

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Trigonometry help

    If sin(x) = 1/3 and sec(y) = 13/12 , where x and y lie between 0 and π/2, evaluate the expression using trigonometric identities. (Enter an exact answer.) sin(x + y)

  2. Precalculus check answers help!

    1.) Find an expression equivalent to sec theta sin theta cot theta csc theta. tan theta csc theta sec theta ~ sin theta 2.) Find an expression equivalent to cos theta/sin theta . tan theta cot theta ~ sec theta csc theta 3.)

  3. Trig

    Find the exact values of the six trigonometric functions 0 if the terminal side of 0 in standard position contains the points(-5,-4). (0 is not the number zero I don't know what its called) I have to find r first. r=sqrt x^2+y^2

  4. Math

    Find the values of the six trigonometric functions of θ. (If an answer is undefined, enter UNDEFINED.) Function Value: csc(θ) = 4 Constraint: cot(θ) < 0 1) sin(θ)= 2) cos(θ)= 3) tan(θ)= 4) csc(θ)= 5) sec(θ)= 6) cot(θ)=

  1. Math

    Which of the following expressions is equivalent to (cos(3x))/sin(x)cos(x))? csc(x) cos(2x) - sec(x) sin(2x) sec(x) cos(2x) - csc(x) sin(2x) sec(x) cos(x) - csc(x) sin(x) csc(x) cos(x) - sec(x) sin(x) This is my last question and

  2. Precalculus

    Which of the following are trigonometric identities? Select all that apply (there are 3 answers). A cos^2(theta)=sin^2(theta)-1 B sin(theta)=1/csc(theta) C sec(theta)=1/cot(theta) D cot(theta)=cos/sin(theta) E

  3. Math

    Use the given function value(s), and trigonometric identities(including the cofunction identities), to find the indicated trigonometric function. sec θ = 5 a) cos θ = 1/sec θ = 1/5 b) cot θ = cos θ/sin θ =cosθ/cos(90-θ) I

  4. math

    Find the values of the trigonometric functions of t from the given information. tan(t) =1/9 terminal point of t is in Quadrant III sin(t)= cos(t)= csc(t)= sec(t)= cot(t)=

  1. Pre-Calculus

    This question has me stuck. Use the Pythagorean identity sin^2 Θ + cos^2 Θ = 1 to derive the other Pythagorean identities, 1 + tan^2 Θ = sec^2 Θ and 1 + cot^2 Θ = csc^2 Θ. Discuss how to remember these identities and other

  2. inverse trig functions

    evaluate the following expressions: tan(sec^-1(5/3)) tan(sec^-1(25/7)) cot(csc^-1(5/3)) i know the answers.. i jus don't know how to solve them =( PLEASE help me I assume your sec^-1 notation denot4es the arcsecant function, etc.

  3. Math

    State the restrictions on the variables for these trigonometric identities. a)(1 + 2 sin x cos x)/ (sin x + cos x) = sin x + cos x b) sin x /(1+ cos x) = csc x - cot x

  4. Alg2/Trig

    Find the exact value of the trigonometric function given that sin u = 5/13 and cos v = -3/5. (Both u and v are in Quadrant II.) Find csc(u-v). First of all, I drew the triangles of u and v. Also, I know the formula of sin(u-v) is

You can view more similar questions or ask a new question.