# Math

If A and B are acute angle such that SinA=8/17 and CosB=3/5.Find
1, Cos(A+B)
2, Sin(A+B)
3, Sin(A-B)

1. 👍
2. 👎
3. 👁
1. sinA = 8/17 = Y/r.
X^2 + Y^2 = r^2
X^2 + 8^2 = (17)^2
X^2 = (17)^2 - 8^2 = 225
X = 15.
cosA = X/r = 15/17.

cosB = 3/5 = X/r.
X^2 + Y^2 = r^2.
3^2 + Y^2 = 5^2
Y^2 = 5^2 - 3^2 = 16
Y = 4.
sinB = Y/r = 4/5.

1. cos(A+B) = cosA*cosB - sinA*sinB.
cos(A+B) = 15/17 * 3/5 - 8/17 * 4/5 =
45/85 - 32/85 = 13/85.

2. sin(A+B) = sinA*cosB + cosA*sinB.

The student can solve #2, and #3.

1. 👍
2. 👎

## Similar Questions

1. ### Geometry

For the acute angles in a right triangle, sin (4x)° = cos (3x + 13) °. What is the number of degrees in the measure of the smaller angle

2. ### Math

if sinA+sinB=x and cosA-cosB=y then find tan[(A-B)/2]

3. ### Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) -

4. ### math

Sketch a right triangle corresponding to the trigonometric function of the acute angle θ. Use the Pythagorean Theorem to determine the third side and then find the other five trigonometric functions of θ. cot(θ) = 3 sin(θ)=

1. ### Trig Practice

Find the exact value of sinA where a=9 and b=10 and angle C is a right angle. a. sin A= 9/sqrt 181, cos A= sqrt 181/10 b. sin A= sqrt 181/9, cos A= 10/sqrt 181 c. sin A= 9/sqrt 181, cos A= 10/sqrt 181 d. sin A=sqrt181/10, cos A=

2. ### Pre-Calculus

If sinA=3/5 when pi/2 < A < pi and cosB=5/13 when 3pi/2 < B < 2pi, find the exact value of the function cos(5pi/6+B).

1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

4. ### Trigonometry

If sinA + sinB = a and cosA + cosB = b, find the value of tanA-B/2

1. ### Maths

if COS A=3/5 and Sin B=7/25, when A us acute and B is obtuse, find without using tables. the value of COS(A+B)

2. ### Math

1. Write the expression as a function of an acute angle whose measure is less than 45. a. sin 80 b. sin (-100) To find the postive acute angle, usually you would subtract 360 from the given measure. Would you have to subtract 45

3. ### math

Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t) - cos(t) + C s(t) = -cos(t) - sin(t) + Cx + D

4. ### Trig

A. Find simpler, equivalent expressions for the following. Justify your answers. (a) sin(180 + è) (b) cos(180 + è) (c) tan(180 + è) B. Show that there are at least two ways to calculate the angle formed by the vectors [cos 19,