trigonometry
 👍 0
 👎 0
 👁 292

 👍 0
 👎 0

 👍 0
 👎 0

 👍 0
 👎 0

 👍 0
 👎 0
Respond to this Question
Similar Questions

Trigonometry
Simplify the expression using trig identities: 1. (sin4x  cos4x)/(sin2x cos2x) 2. (sinx(cotx)+cosx)/(2cotx)

Calculus
Prove the identity cscx+cotx1/cotxcscx+1 = 1+cosx/sinx

Precalculus
Rewrite as single trig function: sin(8x)cosxcos(8x)sinx I know I can simplify sin(8x) into 4sin2xcos2xcos4x, but I'm stuck after that

math;)
The equation 2sinx+sqrt(3)cotx=sinx is partially solved below. 2sinx+sqrt(3)cotx=sinx sinx(2sinx+sqrt(3)cotx)=sinx(sinx) 2sin^2x+sqrt(3)cosx=sin^2x sin^2x+sqrt(3)cosx=0 Which of the following steps could be included in the

Trigonometry
verify the identity: 1 (cos^2x)/(1sinx)= sinx

trigonometry
how do i simplify (secx  cosx) / sinx? i tried splitting the numerator up so that i had (secx / sinx)  (cosx / sinx) and then i changed sec x to 1/ cosx so that i had ((1/cosx)/ sinx)  (cos x / sinx) after that i get stuck

Math
(sinx  cosx)(sinx + cosx) = 2sin^2x 1 I need some tips on trigonometric identities. Why shouldn't I just turn (sinx + cosx) into 1 and would it still have the same identity?

College Algebra
verify the identity. cotx secx sinx=1

Math 12
Simplify #1: cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer cscxtanx/sinx+cosx? Simplify #2: sin2x/1+cos2X = ??? I'm stuck on this one. I don't know what I should do.

PreCalculus
Find a numerical value of one trigonometric function of x if tanx/cotx  secx/cosx = 2/cscx a) cscx=1 b) sinx=1/2 c)cscx=1 d)sinx=1/2

Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] =

Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated
You can view more similar questions or ask a new question.